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Quantifying Musical Meter: How Similar are African and 
Western Rhythm?  

Godfried T. Toussaint 
uch has been written during the past century about the similarities and differences 
between African and Western music (Ward 1927; Waterman 1948; Koetting 1970; Eerola, 

Himberg, Toiviainen, and Louhivuori 2006). “What makes African rhythms sound so different 
from Western rhythms?” is a question often asked (Tan, Pfordresher, and Harré 2010, 292). 
Some authors claim that African music has more complex rhythms (Munyaradzi and Zimidzi 
2012), or that its rhythms are more developed (Muchimba 2008, 113). The rhythms in African 
music have also been compared to those found in Indian music in terms of complexity (Thul 
and Toussaint 2008a) and their additive/divisive properties (Entsua-Mensah 2015). Comparing 
Western (European) music to both African and Indian music, Benjamin I. Gilman (1909, 534) 
writes: “Hindu and African music is notably distinguished from our own by the greater 
complication of its rhythms. This often defies notation.” Kofi Agawu chronicles a good deal of 
the literature that focuses on the purported prominence of rhythm in African music, and its 
asserted complexity relative to that of Western music (Agawu 1995). But is it indeed the case 
that African and Western musical rhythms are fundamentally different? In support of this 
view John Miller Chernoff (1979, 54) writes that “Western and African orientations to rhythm 
are almost opposite.” On the other hand, for David Temperley (2004, 289) “African and 
Western rhythms are profoundly similar.” What is one to make of such antithetical 
pronouncements? The present study will not take sides on this dichotomous characterization 
of a complicated issue. One reason for taking this stance is that there exist in the literature 
scores of different definitions of rhythm (Toussaint 2013). More than forty years ago Kolinski 
(1973, 494) reported that the music literature already contained at least fifty definitions of 
rhythm. By which definition then should African and Western rhythm be compared? As an 
example, consider one of these definitions penned by B. C. Wade (2004, 57), which stipulates 
that “A rhythm is a specific succession of durations.” By this definition African and Western 
rhythms are more than “profoundly similar.” They both consist of successions of durations. 
Furthermore, although this study is quantitative in nature, its goal is not to pin down a 
number with which to characterize the degree of rhythmic similarity lying somewhere in 
between “almost opposite” and “profoundly similar.” A possible way to measure rhythm 
similarity quantitatively is to calculate a comprehensive list of rhythmic features from both 
symbolic and acoustic samples of African and Western music, thus rendering the samples as 
points in a high-dimensional space, in which each dimension represents one feature value. 
The separation of these points measured according to a suitable metric might then yield a 
quantitative measure of the similarity of African and Western rhythm. Such an ambitious and 
difficult study is left for the future. The much more modest goals of the present study are two-
fold. The first is a restriction to zoom in on a single property of rhythm, namely hierarchical 
meter, and to suggest a method of quantifying it by means of pulse saliency histograms. The 
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second limitation is to calculate these histograms for some specific examples of African and 
Western music to determine how they can inform the issue of whether African rhythm 
exhibits hierarchical meter (in the GTTM sense). It is hoped that this approach provides new 
quantitative data that will illuminate the more general question of the similarity between 
African and Western rhythm. 

This study is exploratory in nature, and a word is in order concerning the samples of 
Western and African rhythms used, as well as the experimental methodology adopted. The 
word “African” here refers to the music indigenous in the region to the south of the Sahara 
desert, and thus excludes the Arabic rhythms of North Africa. However, it includes rhythms 
from the Caribbean and Brazil that are used by the communities of African ancestry. On the 
methodological side, the statistical measures employed are descriptive rather than 
hypothetical. No hypotheses are posited here with regard to whether African and Western 
rhythm are similar or not. To carry out such a scientific study properly, random samples of all 
Western and all African music would have to be obtained, in order to be able to validly test 
hypotheses. The study here is rather a preliminary exploration (in the style of data mining) of 
some examples that may point the way to more exhaustive analyses and more rigorous tests of 
specific hypotheses. In the absence of a random sample of African rhythms, an alternative 
approach is adopted in the form of a worst-case analysis, in which rather than obtaining a 
large random sample of African rhythms, a collection of unique special rhythms is selected for 
study. In particular, if the claim is true that African rhythm does not have hierarchical meter, 
then these special rhythms (among all African rhythms) should be those most unlikely to 
possess hierarchical meter. Good candidates for this purpose are asymmetric timelines 
(usually played with a variety of bells and high-pitched wooden sticks) because they tend to 
utilize onsets in positions that are non-metrical (Agawu 2006; Anku 2002a; Anku 2002b; 
Chernoff 1979; Kubik; Leake 2009; Locke 1982; London 1995; Pressing 1983; Rahn 1987; Rahn 
1996; Temperley 2000; Toussaint 2013). To complement the African timelines with a very 
different African group of rhythms, the pulse saliency histograms of three traditional songs 
from Ghana notated by Kwabena Nketia (1963a) were calculated and tested. Although Nketia’s 
book contains a score of notated songs, only three have duple meters that could be 
incorporated into a 16-pulse cycle for fair comparison with the other data (all the timelines 
used in this study have 16-pulse cycles, whereas the remaining songs in Nketia’s book have 
triple meters that do not divide evenly into sixteen pulses). For the Western rhythms, samples 
were used for which the pulse saliency histograms were easily available or computable. These 
pieces span Renaissance and common-practice music, and include Palestrina’s Pater Noster 
(Veltman 2006), German folk songs (Huron and Ommen 2006), and compositions by J. S. 
Bach, Mozart, Brahms, and Shostakovich (Palmer and Krumhansl 1990). For comparison with 
music theory, the histogram determined by the GTTM hierarchy (see more below) was used. 
Since the GTTM hierarchy is uniquely defined for a 16-pulse timespan (cycle, measure), the 
music samples selected for this study all had 16-pulse cycles, thus providing a sharper focus 
for the comparisons.  
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The concept of meter has already been used to compare African with Western music 
(Toiviainen and Eerola 2003). However, as with the concept of rhythm, the music literature 
offers an abundance of definitions of the term meter (Kvifte 2007; Toussaint 2013). Martin 
Clayton disentangles some of these definitions (Clayton 1996), Christopher Hasty illuminates 
the interface between meter and rhythm (Hasty 1997), and Justin London clarifies the 
distinction between meter and grouping (London 1995 and 2012). On one end of the 
conceptual spectrum, meter is defined as a mere pulsation of equally spaced (regular) beats 
(lacking any hierarchy) that may be sounded or merely felt, and that functions as the railing 
on which rhythms ride. At this level meter divides the timespan cycle (measure) into a specific 
number of regular beats such as 3, 4, 5, 6, 7, 8, 9, 12, 16, etc., without placing emphases (accents) 
on any one beat. At the other end of this spectrum, the regular beats are hierarchically 
arranged according to their strength within an evenly divisible periodic cycle. Such is the view 
of Lerdahl and Jackendoff (1983), who define meter as a regular pattern of alternating strong 
and weak beats arranged in a specific hierarchical manner. According to this definition the 
meter furnishes the musician with a hierarchy of temporal reference points. This structure, 
referred to as the Generative Theory of Tonal Music (GTTM) hierarchy, is illustrated in Figure 1 
for the case of a 16-pulse measure (periodic cycle). The height of the column in each pulse 
position reflects the relative strength of each pulse. The values of these heights should not be 
interpreted as absolute numerical quantities, but rather as relative magnitudes with respect to 
each other. What is more important for characterizing the nature of the GTTM hierarchy is 
the discrete ordering (rank) of these 16 magnitudes. This is the definition of meter that has 
been frequently invoked to contrast African with Western rhythm, and which is the focus of 
this study. For the purpose of the statistical analyses carried out here, the magnitudes may be 
scaled so that they all sum to 1, and thus may be conveniently considered as probabilities of 
the occurrences of onsets at each of the 16 pulse positions, although such an interpretation is 
motivated more by Palmer and Krumhansl’s empirical finding (1990) than by Lerdahl and 
Jackendoff’s theory (1983).  

The GTTM model received considerable criticism regarding its applicability to non-
Western music immediately following its publication, mainly from music psychologists and 
ethnomusicologists (Arom 1991; Belinga 1965; Koetting 1970; Hansen 2011; Magill and Pressing 
1997; Nketia 1963b; Tan, Pfordresher, and Harré 2010). One specific criticism has been that the 
GTTM hierarchy is based on intuition and music theory principles that were not supported by 
psychological experimental data (Hansen 2011). This criticism spawned several empirical 
studies to evaluate GTTM’s psychological reality (Deliège 1987; Dibben 1994; Palmer and 
Krumhansl 1990; Todd 1994). In studies with Western music it was found experimentally that 
the strength of a pulse location correlates well with the degree of the expectancy of 
occurrence of an onset at that particular location (Palmer and Krumhansl 1990). Even so, a 
second criticism of GTTM has been that it is a theory applicable only to Western tonal music, 
and that its claims of universality have not been supported by intercultural research (Hansen 
2011). Some writers contend that African rhythms in general, and timelines in particular, 
exhibit an additive structure rather than being hierarchically evenly divisible, as specified by 
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the GTTM model (Tan, Pfordresher, and Harré 2010, 292). Indeed, some evidence for this view 
has been reported by Magill and Pressing (1997, 195) who obtained empirical results suggesting 
that under certain conditions the asymmetric non-isochronous timeline-ground model (TLG) 
achieved superiority over the Western isochronous pulse-ground (PG) model. They conclude 
that the African cognitive model is “subtle, context-dependent, and linked to specific training 
regimes.” For a discussion of the differences between additive and divisive representations of 
rhythm see Agawu (2003, 86–96), and Entsua-Mensah (2015, 167). 

In addition to the above criticisms of the GTTM hierarchy promulgated by music 
psychologists, some ethnomusicologists have dismissed its applicability to African music. 
Regarding the role of meter in Sub-Saharan African music, Simha Arom (1991, 206) writes that 
“the pulsation is the only temporal reference the musicians have.” Nketia (1963b, 10) 
emphasizes that “the African learns to play rhythms in patterns.” Such a sentiment is echoed 
by James Koetting (1970, 124), who writes that “African drummers do not think in terms of 
meter.” M. S. Eno Belinga (1965, 18) dismisses meter outright: “In African music only one thing 
matters: the periodic repetition of a single rhythmic cell.” Of course, learning to play rhythms 
in patterns, repeating rhythmic cells, and drumming without thinking in terms of meter are 
not activities that per se necessarily produce rhythms that lack meter. Nevertheless, the 
consensus of these and other authors is that African music does not possess meter in the 
hierarchical sense embodied by the Lerdahl-Jackendoff model. 

The criticisms of GTTM described above, by both music psychologists and 
ethnomusicologists, are based on the behavioral acts of perception and production of musical 
rhythms. However, instead of focusing only on the subjective process of generating and 
perceiving African rhythms, we can also seek answers to the aforementioned questions by 
analyzing the objective product instead, i.e., the rhythmic object or written score. In this paper 
the two questions outlined above, concerning how similar African and Western rhythm are, 
and whether African rhythm possesses hierarchical meter, are subjected to a mathematical 
analysis using pulse saliency histograms. This yields quantitative and qualitative measures 
which help to illuminate the structure and degree of this similarity, as well as how much and 
what type of hierarchical meter African rhythms inform and interact with. Unlike previous 
comparisons of Western with non-Western music based on objective acoustic tonal features 
(Gomez and Herrera 2008), the analyses presented here are based only on the features of 
rhythm and meter, and are restricted to symbolic notated music. 

As intimated above, the present study uses the methodology of descriptive statistics, 
rather than a formal, hypothesis-driven approach. In anticipation of criticism from readers 
who ascribe to such formal methods, an explanatory summary of the issues is warranted. 
Since the GTTM hierarchy implies a ranking of the 16 pulse frequencies (expectations), with 
the first pulse receiving the highest rank, the ninth pulse the second highest rank, the fifth and 
thirteenth tied for the third highest rank, etc. (see Figure 1), a natural measure to compare the 
association between pulse-frequency histograms is via the Spearman rank correlation 
coefficient (Spearman 1904), which measures how monotonic the relation between two  
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Figure 1. The GTTM metric hierarchy of Lerdahl and Jackendoff. 

variables is. Another common measure of association between two variables is the Pearson 
correlation coefficient (Pearson 1920), which measures how linear the relation is. Which of the 
two correlations is a better description of the association for a particular problem is part of an 
ongoing debate (Maturi and Elsayigh 2010). Previous studies indicate that sometimes the 
Spearman correlation is higher than the Pearson correlation, and vice-versa (Hauke and 
Kossowski 2011). The same behavior was observed with the rhythm data analyzed here, and 
for this reason, rather than reporting only one of these two correlation coefficients, in the 
present study both are included. A second issue related to reporting correlation coefficients in 
descriptive statistics concerns the reporting and meaning of the p-values (also called, 
misleadingly, the levels of significance). This matter also has a long history of debate. Some 
researchers (Jekel 1977) have asked the question “Should we stop using the P value in 
descriptive studies?” Paraphrasing Perry de Valpine (2014), the purpose of p-values is to 
convince others that either a pattern discernible in data is real, or it could plausibly have 
arisen by chance alone. More specifically, the p-values are probabilities often used in a 
hypothesis-driven context to test how confident one can be that a statistic calculated from a 
sample of data taken from a larger dataset (the population) also applies to the population as a 
whole. It is usually assumed that the smaller this probability is, the more confident we can be 
in the veracity of the hypothesis. However, this must be taken with a grain of salt since p-
values are not fixed values, but random variables, and thus have a distribution (Murdock et al. 
2008). Concerning the 34 African asymmetric timelines used in this study (see the Appendix), 
the question then arises as to whether they represent a random sample of some larger 
population. The purpose of this study is to use the 16-pulse asymmetric timelines used in 
music from Sub-Saharan Africa and the African diaspora as a worst-case litmus test. These 34 
timelines represent all the timelines that the author was able to collect from scholarly books 
and papers on the subject. Therefore the “sample” may be considered to be the entire 
population, in which case the p-values would be considered to be meaningless in the 
traditional hypothesis-driven context (which this study is not). The reader may care to 
formulate various hypotheses in terms of larger populations, such as these 34 asymmetric 
timelines plus those not discovered by the author, or those asymmetric timelines consisting of 
all possible numbers of pulses (timespans, cycles, measures) such as 6, 8, 9, 12, 16, 18, and 24, or 
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all rhythms used in the music of the African diaspora. However, in these situations the 34 
hand-picked timelines would diverge greatly from a random sample. Barber and Ogle (2014) 
consider the question “To P Or Not to P?” In the present study p-values are listed along with 
correlations in the spirit of descriptive statistics and data mining, but no interpretations in 
terms of hypothesis testing are implied by their inclusion. The reader is referred to the 
complex and varied literature on the interpretation of statistical significance tests, and may 
interpret them appropriately. To complement the numerical correlation coefficients and p-
values reported, visual plots of the data and graphs of the histograms are provided, which may 
reflect the true nature of the relations better than abstracted numbers and statistical 
significance levels. 

Regarding the methodology of correlations, an alternative approach to calculating the 
correlation coefficients between the pulse saliency histograms (frequency distributions) and 
the GTTM hierarchy (or other models) is to calculate the correlation value for each of the 34 
individual timelines with the GTTM hierarchy, and then perform a t-test to determine 
whether the resulting correlation values are significantly greater than zero. A t-test is a 
statistical test to determine whether a sample of data comes from a population with a specific 
mean (in the present context the mean correlation is hypothesized to be zero). This approach 
was also tried in order to compare this procedure with the histogram method, and the results 
are described in the section below on African timelines. 

PULSE SALIENCY HISTOGRAMS IN RENAISSANCE AND COMMON-PRACTICE MUSIC 

A pulse saliency histogram calculated from a given corpus (dataset) of symbolically 
notated music resembles the GTTM hierarchy shown in Figure 1. The difference is that the 
height of a column in the pulse saliency histogram corresponds to the empirically observed 
frequency of occurrence of an onset in that position of the rhythmic cycle. In this section we 
compare the pulse saliency histograms of Renaissance and common-practice music with the 
GTTM hierarchy and the 34 timelines of the Appendix. The pulse saliency histogram of the 
onsets in Palestrina’s sixteenth-century motet, Pater Noster, compiled by Joshua Veltman 
(Veltman 2006), is shown in Figure 2. The correspondence between this histogram and the 
GTTM hierarchy in terms of the ranks of the saliencies of its pulses is visually striking. In both 
graphs, pulses 1 and 9 contain the highest and second highest columns, respectively. In both 
graphs, pulses 13 and 5 come next, and have approximately equal height. The same may be 
said of the third-level pulses 3, 7, 11, and 15, as well as the fourth-level pulses 2, 4, 6, 8, 10, 12, 14, 
and 16. This visual comparison is compelling enough in this case, but in order to obtain a 
quantitative measure of the relationship (similarity) that exists between the hierarchies (or 
ranks) of the two histograms, correlation coefficients may be computed between the vectors 
determined by each of the sixteen ordered heights. The resulting Spearman (rs) and Pearson 
(rp) correlation coefficients between the two histograms are rs = 0.935 with p < 0.00001 and rp = 
0.955 with p < 0.0001, respectively (refer to Table 2 on page 14 below for these and other 
results). The very high correlations between these two histograms provide additional strong 
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quantitative evidence that the GTTM hierarchy is an accurate model of the metric hierarchy 
contained in Palestrina motets. Note that the Pearson correlation is higher than the Spearman 
correlation but has lower p-value. 

Palmer and Krumhansl (1990) calculated the pulse saliency histograms of a sample of 
common-practice music (which included one contemporary composer—Dmitri 
Shostakovich). They chose for their analysis a selection of piano compositions by four 
composers J. S. Bach, French Suites III (Allemande and Sarabande), IV (Gigue), and VI 
(Gavotte); W. A. Mozart, Piano Sonatas K310, 311, 545, and 576; Johannes Brahms, Piano 
Intermezzi Opus 118, No. 1, and 119, Nos. 2, 3, and 4; and Dmitri Shostakovich, Piano Prelude III 
and Fugues III, VI, and XI. Their selection included music composed in a variety of meters, 
but all the pieces contained fragments with 16-pulse measures, which yielded the pulse 
saliency histogram shown in Figure 3. The resulting correlations between GTTM and the 
Palmer-Krumhansl histograms are rs = 0.937 with p < 0.000001 and rp = 0.959 with p < 0.0001. 
Again the very high correlations between these two histograms provide quantitative evidence 
that the GTTM hierarchy is an extremely accurate model of the metric hierarchy contained in 
the common-practice music of these composers. Note also again that the Pearson correlation 
is higher than the Spearman correlation but has a lower p-value. 

The pulse saliency histograms of the Palestrina motet (Figure 2) and the compositions by 
Bach, Mozart, Brahms, and Shostakovich (Figure 3) suggest the possible discovery of a 
characterization of the difference between Renaissance music and common-practice music. 
The Palestrina hierarchy follows the GTTM model almost perfectly in terms of the ranking of 
pulse positions; only the relative heights differ. This means that all the even-numbered pulses 
have almost equal height, the pulses numbered 3, 7, 11, and 15 are almost the same, and pulses 5 
and 13 have almost equal height. Even the first and ninth pulses are almost equal. This 
hierarchy possesses many left-right mirror symmetries because all the levels of the hierarchy 
are flat. In particular, pulses 9, 5, and 13 show a mountain peak structure with the central pulse 
9 dominating. Examination of the Palmer-Krumhansl histogram (Figure 3) reveals that 
although similar symmetrical structures hold for the two lowest levels, the remaining levels  

 

 
 

Figure 2. The pulse saliency histogram of Palestrina’s Pater Noster (Veltman 2006). 
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Figure 3. The pulse saliency histogram for 16-pulse timespans of the common-practice music examples 
compiled by Palmer and Krumhansl (1990). 

tell a different story; pulses 5, 9, and 13 show a linear increase with pulse 13 dominating, and 
thus lack left-right symmetry. This suggests that it may be possible to characterize the 
difference between Renaissance and common-practice music by the relative strength of 
pulses 9 and 13. The meter of Renaissance music appears to be more symmetrical than 
common-practice meter. It would be interesting to confirm this hypothesis with larger 
samples of these two genres of music. The symmetry properties are analyzed further in the 
Discussion and Conclusion section below. 

A feature that both histograms (Palestrina and the Palmer-Krumhansl data) have in 
common with each other and with GTTM is that the magnitudes of the ordered pulses are 
characterized by a perfect up-down alternating pattern. The correlation coefficients between 
Palestrina and the Palmer-Krumhansl histograms are rs = 0.933 with p < 0.000001 and rp = 0.934 
with p < 0.0001. 

AFRICAN TIMELINES AND WESTERN MUSIC 

The African timelines and the samples of Western music being compared are very 
different sets of data. Clearly, for the Western music samples there is metrically significant 
sonic information that is missing from such a comparative analysis. However, this is necessary 
for a starting point in any reductionist scientific investigation. Future research that takes such 
additional information into account can then clarify the degree to which the missing metrical 
information is useful. As already described in the Introduction, apart from a few exceptions, 
the Sub-Saharan African rhythms that are considered to be the most different from rhythms 
employed in Western music consist of the timelines occurring in drum ensemble music. Much 
has been written about their uniqueness, complexity, and the amount of syncopation (in 
relation to Western hierarchical meter) that they possess (Agawu 2006, 2003, and 1995; Arom 
1991; Cuthbert 2006; Pressing 1983; Rahn 1996 and 1987; Temperley 2000; Thul and Toussaint 
2008; Toussaint 2013 and 2011). Therefore intuition would dictate that these timelines provide 
a suitable data set (a type of litmus test) to shed light on the claims that African and Western 
rhythms are fundamentally different, and that African music lacks hierarchical meter. To 
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inform these claims, a corpus of 34 notated timelines used in the music of Sub-Saharan Africa 
and the African Diaspora were collected from the following published papers and books 
(Agawu 2003 and 1995; Arom 1991; Chernoff 1975; Locke 1982; Pressing 1983; Rahn 1987 and 
1996; Temperley 2000). These timelines, shown in box notation in the Appendix, all have 16 
pulses, and the number k of their onsets (beats) varies between 5 and 10. In this box notation 
an empty box denotes a silent pulse, and a box containing an X denotes a beat or onset (the 
strike of the bell, a wooden clave, or a drum). The histogram computed from these 34 rhythms 
is shown in Figure 4. This histogram looks very different from the one in Figure 1. Apart from 
the dominant column at pulse number 1, key structural properties of the GTTM hierarchy are 
not instantly perceivable. In GTTM and Pater Noster (Figure 2), the most salient pulses after 
pulse 1 are 5, 9, and 13, whereas in the African timelines pulses 3 and 7 are preferred, indicating 
that the latter rhythms are more syncopated than the former. Another obvious difference is 
that the African timelines make use of most pulses with almost equal frequency, noticeably 
largely disregarding pulses 2 and 16. However, before hastily concluding that African 
timelines are profoundly different from Western rhythms, and lack hierarchical meter 
altogether, it is instructive to compare the hierarchies in these two histograms with the 
Spearman and Pearson correlations. The correlation coefficients between the African 
timelines and GTTM are rs = 0.793 with p < 0.0002, and rp = 0.774 with p < 0.0005. On the other 
hand, for African timelines and Pater Noster the correlations are rs = 0.786 with p < 0.0002, and 
rp = 0.588 with p < 0.009. These are high correlations with low p-values. Therefore, although 
there are some illuminating and important differences between the histograms (discussed 
further below), what is being tested in addition to the similarity of the overall shape of the 
histograms, is whether they exhibit similar metric hierarchies as defined in GTTM: 
alternating strong and weak beats arranged in a hierarchy that exhibits a maximum number 
of left-right symmetries with the 5-level height constraints of the histogram columns. The 
Spearman correlation coefficient measures the ordering of the relative heights of the 
histogram columns, and is thus more sensitive to the contour of the histogram columns than 
to their absolute values. The contour is a three-symbol string that takes on the symbol “+” if 
the value increases, “-” if it decreases, and “0” if it stays the same (Marvin 1991; Morris 1993; 
Quinn 1999). Note that all three histograms have exactly the same contour: [- + - + - + - + - + - + - 
+ - +]. Therefore, the correlation coefficient provides significant evidence that African 
timelines, as a family, do contain the lower levels of hierarchical meter, and thus are similar in 
this regard to the rhythms of Western music. The shape of the histogram provides additional 
useful information as to how they differ. 

The histogram for Palestrina’s Pater Noster has an almost perfect resemblance to the 
GTTM hierarchy. The histogram of the common-practice music in Figure 13 differs noticeably 
with the height of column 13, and one may wonder how the histogram might differ if obtained 
from yet another different European music genre from another century. Thanks to the work 
of Huron and Ommen (2006), who calculated the onset frequencies for the well-known Essen 
corpus of Germanic folk songs, this question can be easily answered. The histogram for this 
corpus, shown in Figure 5, differs somewhat from the histogram of Pater Noster, but like the  
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Figure 4. The onset frequencies for the African timelines for k = 5–10. 

other four above, has exactly the same contour: [- + - + - + - + - + - + - + - +]. The correlation 
coefficients between the German folk songs and GTTM are rs = 0.930 with p < 0.00001 and rp = 
0.973 with p < 0.000001 (similar to Pater Noster), and the correlations between the German folk 
songs and the African timelines histogram are rs = 0.73 with p < 0.0007 and rp = 0.680 with p < 
0.002. It is worth pointing out a discriminating feature that can be used to distinguish between 
the German folk songs and Palestrina’s Pater Noster, which is that in the latter, ignoring the 
column at pulse 1, the remaining histogram exhibits strong mirror symmetry about pulse 9, so 
that for example, the heights at the fourth level in the hierarchy, at pulses 3, 7, 11, and 15 are all 
about the same. On the other hand, for the German folk songs this mirror symmetry is absent: 
at the third level, pulse 13 is more prominent than pulse 5, and at the fourth level, pulses 7 and 
15 are more prominent than pulses 3 and 11. The question of symmetry is discussed in more 
detail in the Discussion and Conclusion section. 

 As pointed out in the Introduction, another approach to measuring the association 
between the African timelines and the GTTM model is to calculate the correlation coefficient 
for each individual timeline (rather than the frequency distribution of all the timelines) with 
the GTTM profile, and then perform a t-test to determine whether the resulting average 
correlations are significantly greater than zero (Watkins et al. 2004). The average of the 
Spearman correlations (averaged over all 34 timelines) is 0.296 with a standard deviation of  

 
 

Figure 5. The onset frequencies of the German folk songs (Huron and Ommen 2006). 
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0.232, a standard error of 0.041, and a t-value equal to 7.219 with a p-value < 0.0001. In addition, 
the average Pearson correlation (averaged over all 34 timelines) is 0.320 with a standard 
deviation of 0.198, a standard error of 0.035, and a t-value of 9.151 with a p-value < 0.0001. 
Therefore this alternative method yields results in agreement with the process of comparing 
the averaged timelines in the form of the pulse saliency histograms. Indeed, the Pearson 
correlations are even higher than the Spearman correlations. From the theoretical point of 
view, both methods, (1) correlating the averages, or (2) averaging the correlations, are valid 
methods for measuring the associations between groups, but correlated averages (the method 
of choice in this study) are more likely to make a point about features of the timelines and how 
they relate to each other (Monin and Oppenheimer 2005). 

AFRICAN SONGS AND WESTERN SONG 

In the comparisons of Western and African musical rhythm described above, the 
African timelines (bell patterns) are characterized by highly syncopated, short, staccato, sharp 
sounds made with percussion instruments such as metal bells or wooden sticks. On the other 
hand, some of the European rhythms were composed of the onsets (beginnings) of sustained 
notes in songs (Pater Noster and German folk songs). One may wonder how the results 
obtained might change if the onsets of the notes of European songs as well as the GTTM 
model were compared with the onsets of the notes of African songs (melodies). With such a 
pilot study in mind, the notated traditional African songs from Ghana (Nketia 1963a) were 
used to calculate the pulse saliency histograms. Although most of the notated songs listed in 
Appendix II of Nketia’s book (1963a, 115) were composed of a 12-pulse (ternary) meter, three 
songs incorporated a 16-pulse (binary) meter, and could thus be used for this comparison. 
These songs included the Akan maiden solo song Yaw Barima, the Ga cradle song Mibi Le 
Baada, and the Gonja maiden song Nayalamu. The names Akan, Ga, and Gonja refer to the 
language or cultural group associated with the song. The aggregated onset pulse saliency 
histogram compiled from the three songs is shown in Figure 6, where the numbers above the 
seven highest columns indicate their rank according to decreasing height. 

 

 
 

Figure 6. The onset frequencies of the three songs from Ghana. 
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 GTTM   
Hierarchy 

Palestrina’s 
Pater Noster 

Common-
Practice Music 

German 
Folk Songs 

African 
Timelines 

Three 
Ghanaian 
Songs 

rs = 0.596 
p < 0.00 
 
rp = 0.618 
p < 0.006 

rs = 0.714 
p < 0.001 
 
rp = 0.528 
p < 0.018 

rs = 0.600 
p < 0.007 
 
rp = 0.610 
p < 0.006 

rs = 0.633 
p < 0.005 
 
rp = 0.634 
p < 0.005 

rs = 0.653 
p < 0.003 
 
rp = 0.664 
p < 0.003 

 
Table 1. Spearman and Pearson correlation coefficients for the three Ghanaian songs. 

Table 1 shows the correlation coefficients for the histogram of Figure 6 compared with 
the GTTM model, as well as the histograms of Palestrina’s Pater Noster, the samples of 
common-practice music, the Germanic folk songs, and the African rhythm timelines. All the 
correlations range from moderately high to high, with values ranging from rp = 0.528 to rs = 
0.714 for Pater Noster, and all have p-values less than 0.02. 

The histogram also provides useful information concerning the relative saliency of the 
locations of the onsets. Consider the seven most frequently used pulse locations, identified in 
Figure 6 by numbers in decreasing order. Note that pulses 1, 4, and 7 are the three most 
frequently observed locations, with 4 and 7 tied for second place. By themselves, these three 
onsets determine the 8-pulse rhythm with inter-onset intervals 3-3-2, one of the most popular 
8-pulse rhythms found all over the world (Leake 2009; Pressing 1983; Rahn 1987 and 1996; 
Toussaint 2013) and known as the tresillo in Cuba. This rhythm is also the first half of the 
distinguished 16-pulse son clave rhythm (3-3-4-2-4) (Toussaint 2013). Furthermore, the seven 
most frequently used pulses determine the rhythm 3-3-2-2-2-2-2, which is the concatenation of 
the 8-pulse 3-3-2 pattern with the regular 8-pulse pattern 2-2-2-2, and appears in reverse order 
(2-2-2-2)(3-3-2) as the Central-African timeline in the Appendix. These results suggest that the 
rhythms of the melodies of these songs are influenced by the rhythms of the asymmetric 
timelines used in the music. The singing itself emphasizes the rhythms of the timelines that 
are normally played with a bell. These results provide quantitative validation (of what African 
musicians and scholars of African music know) that one of the roles of timelines is to organize 
and inform other layers of rhythmic (and melodic) activity, and that in African and African 
Diasporic music, timelines act as governing forces that may be felt rather than literally 
articulated by some player in the ensemble. 

To estimate the variability among the three Ghanaian songs, their individual histograms, 
shown in Figures 7 to 9, were computed. These histograms and the correlation coefficients 
listed in Table 2 highlight individual differences between the songs, and provide quantitative 
measures of these differences. The Nayalamu Gonja Maiden Song has a histogram that differs 
significantly from the two other songs, and appears to be uncorrelated with the GTTM model 
or the German folk songs. These correlations are shown in Table 2. This song correlates 
mildly with the African timelines (rs = 0.452 with p < 0.04, rp = 0.582 with p < 0.009), with 
common-practice music (rs = 0.352 with p < 0.090, rp = 0.417 with p < 0.054), and with Pater 
Noster (rs = 0.450 with p < 0.04, rp = 0.380 with p < 0.073). The three histograms have significant 
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differences from each other. Yaw Barima uses only eight of the sixteen pulse locations (as 
opposed to twelve for the two other songs), and it emphasizes the alternation property, with a 
violation at pulse 3 so as to start with the 3-3-2 interonset interval pattern. Mibi Le Baada has a 
regular pattern of adjacent triplets with equally spaced silent pulses at positions 2, 6, 10, and 
14. Thus these silent pulses create a shifted 4/4 pattern, creating a prevalent rhythmic pattern 
from the Colombian cumbia music (Toussaint 2013). Nayalamu has the distinction of using two 
groups of five adjacent pulses: 3-7 and 11-15. 

 

 
Figure 7. The onset frequencies of the Akan maiden solo song Yaw Barima. 

 
Figure 8. The onset frequencies of the Ga cradle song Mibi Le Baada. 

 
Figure 9. The onset frequencies of the Gonja maiden song Nayalamu. 
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 GTTM 
Hierarchy 

Palestrina 
Pater Noster 
(Veltman) 

Common-
Practice  
Music  
(Palmer & 
Krumhansl) 

German Folk 
Songs      
(Huron & 
Ommen) 

Yaw Barima 
Akan 
Maiden 
Song 

Nayalamu 
Gonja 
Maiden 
Song 

Mibi Le 
Baada  
Cradle 
Song 

African 
Timelines 

rs = 0.793 
p < 0.0002 
 
rp = 0.774 
p < 0.0005 

rs = 0.786 
p < 0.0002 
 
rp = 0.588 
p < 0.009 

rs = 0.785 
p < 0.0002 
 
rp = 0.725 
p < 0.0008 

rs = 0.730 
p < 0.0007 
 
rp = 0.680 
p < 0.002 

rs = 0.740 
p < 0.001 
 
rp = 0.598 
p < 0.008 

rs = 0.452 
p < 0.039 
 
rp = 0.582 
p < 0.009 

rs = 0.582 
p < 0.009 
 
rp = 0.577 
p < 0.01 

GTTM   
Hierarchy 

 rs = 0.935 
p < 0.00001 
 
rp = 0.955 
p < 0.0001 

rs = 0.937 
p < 0.000001 
 
rp = 0.959 
p < 0.0001 

rs = 0.930 
p < 0.00001 
 
rp = 0.973 
p < 0.000001 

rs = 0.661 
p < 0.003 
 
rp = 0.577 
p < 0.01 

rs = 0.374 
p < 0.08 
 
rp = 0.470 
p < 0.04 

rs = 0.680 
p < 0.002 
 
rp = 0.659 
p < 0.003 

Palestrina 
Pater Noster 
(Veltman) 

  rs = 0.933 
p < 0.000001 
 
rp = 0.934 
p < 0.0001 

rs = 0.969 
p < 0.000001 
 
rp = 0.971 
p < 0.0001 

rs = 0.760 
p < 0.0003 
 
rp = 0.501 
p < 0.024 

rs = 0.452 
p < 0.040 
 
rp = 0.380 
p < 0.073 

rs = 0.844 
p < 0.0002 
 
rp = 0.597 
p < 0.008 

Common-
Practice 
Music 
(Palmer & 
Krumhansl) 

   rs = 0.943 
p < 0.000001 
 
rp = 0.971 
p < 0.0001 

rs = 0.653 
p < 0.003 
 
rp = 0.645 
p < 0.004 

rs = 0.352 
p < 0.09 
 
rp = 0.417 
p < 0.054 

rs = 0.753 
p < 0.0004 
 
rp = 0.658 
p < 0.003 

German 
Folk Songs 
(Huron & 
Ommen) 

    rs = 0.689 
p < 0.002 
 
rp = 0.614 
p < 0.006 

rs = 0.361 
p < 0.09 
 
rp = 0.463 
p < 0.036 

rs = 0.797 
p < 0.0001 
 
rp = 0.691 
p < 0.002 

Yaw Barima 
Akan  
Maiden 
Song 

     rs = 0.635 
p < 0.004 
 
rp = 0.657 
p < 0.003 

rs = 0.702 
p < 0.002 
 
rp = 0.668 
p < 0.003 

Nayalamu 
Gonja 
Maiden 
Song 

      rs = 0.612 
p < 0.006 
 
rp = 0.622 
p < 0.005 

 

Table 2. Spearman and Pearson correlation coefficients for the remaining collection of datasets. 

DISCUSSION AND CONCLUSION 

The results presented here provide some evidence that supports the hypothesis put 
forward by David Temperley (2000) that African and Western rhythms, at least when 
compared in terms of the structure of their pulse saliency histograms, exhibit some 
similarities, although the term “profoundly similar” is perhaps too strong a description if 
timelines are compared to Western meter. In order to reach such a strong conclusion, 
additional study should be undertaken using ethnography, a wider all-encompassing set of 
musical features, and more detailed statistical performance models. Nevertheless, the 
correlation coefficients provide quantitative measures of the degree of the metric similarity. 
Furthermore, the structure of the histograms themselves provides insight into the types of 
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similarities observed. Contrary to several claims found in the literature, the results provide 
mathematical evidence that African rhythm does possess hierarchical meter, albeit to a 
limited extent, along the lines of the original GTTM model, thus lending mathematical 
support to the perspective of Kofi Agawu (1995). The very high correlation between the 
Renaissance music, common-practice music, and German folk songs with African timelines 
also adds mathematical support to the view of Mark Hijleh (2008) that the “practical theory of 
world rhythm reveals that even older Western art music can have more in common 
rhythmically with its Asian, African and American counterparts than might be suspected” 
(Hijleh 2008). 

The descriptive statistical comparisons of the histograms in terms of the Spearman and 
Pearson correlation coefficients are global comparisons. On the other hand, the local 
comparisons of the shapes of the histograms serve to highlight several specific differences 
between the corpora that are worth noting. From a visual inspection of the histograms in 
Figures 1 to 5, it is clear that the onsets of the African timelines (Figure 4) are distributed more 
equally among the 16 pulse locations (with the exception of pulses 1, 2, and 16), whereas in 
Palestrina’s Pater Noster, the common-practice compositions, and the German folk songs, the 
onsets are concentrated on a much more restricted subset of pulse locations. According to the 
analysis by Veltman (2006, 81), Palestrina’s Pater Noster is characterized by a 16-pulse cycle, 
which is adopted here. It would be interesting to perform a similar analysis assuming an 8-
pulse cycle to see how much the results differ. A flatter histogram is an indication of the 
presence of a greater variety of onset placements in relation to the timespan (measure), and 
thus of increased rhythmic complexity (Thul and Toussaint 2008b). To obtain two 
quantitative measures of histogram flatness, the Shannon entropy of the histograms 
(normalized so that they resemble probabilities and sum to 1), and the standard deviations of 
the histogram bin heights may be calculated by viewing the histograms as discrete probability 
distributions (Vitz 1968). The entropy has been used before to compare musical styles 
(Knopoff and Hutchinson 1983; Snyder 1980). Denoting the height (probability) of the i-th 
histogram bin by pi, the Shannon entropy H was calculated using the formula: 

H = − pi log2 pi
i=1

16

∑  

The resulting calculations are shown in Table 3, in order of increasing entropy from left 
to right. The degree of flatness of the histograms is indicated by relatively high values of 
entropies, and relatively low values of standard deviations. Note that the standard deviations 
are decreasing monotonically from left to right, and thus both measures are in perfect 
agreement with respect to the relative complexities of the rhythms of these corpora. From 
these results we may conclude that Palestrina’s Pater Noster has the simplest rhythms, and the 
African timeline rhythms are the most complex (at least by these two measures of 
complexity). Furthermore, the GTTM profile is more complex than the common-practice 
rhythms in the Palmer-Krumhansl samples, which are more complex than the rhythms of the 
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German folk songs compiled by Huron and Ommen, which in turn are more complex than 
Palestrina’s Pater Noster. It is worth noting that the maximum possible value of the entropy, 
attained for a perfectly flat histogram, is 4.0, and that the entropy of the GTTM hierarchy (H = 
3.75) is almost equal to that of the African timelines (H = 3.81). Indeed, both are close to 4.0, 
again suggesting another commonality between Western and African rhythms. The data also 
suggest that, on the whole, the meter in Western music has become more complex during the 
past four centuries, and has reached levels of complexity almost as high as that of the African 
timelines. 

The definition of meter by Lerdahl and Jackendoff (1983), as a regular pattern of 
alternating strong and weak beats arranged in a specific hierarchical manner, may be 
untangled in terms of three distinct properties: (1) a regular pattern of alternating strong and 
weak beats, (2) a particular five-level hierarchical distribution of the relative strengths of these 
beats, in which the fifth and fourth levels are realized by one pulse location each, the third 
level is realized by two pulse locations, the second level is realized by four pulse locations, and 
the first level is realized by eight locations, and (3) the placement of these histogram bins 
within the timespan (measure) so as to create a fractal pattern with a maximum number of 
sub-symmetries among the histogram bins of different heights. Informally, a fractal pattern is 
one that is self-similar at different scales or “looks the same” at different levels of “zooming in” 
(Mandelbrot 1982). These three properties will be referred to by the shorter terms (1) 
alternating property, (2) distribution property, and (3) fractal symmetry property, respectively. Note 
that the third property is a combination of two distinct properties: (a) the presence of sub-
symmetries, and (b) whether the sub-symmetries form a fractal pattern. These concepts are 
illustrated with the GTTM profile in Figure 10. A sub-symmetry of a pattern is a contiguous 

 
 Palestrina’s 

Pater Noster 
German 
Folk Songs 

Common- 
Practice Music 

GTTM  
Hierarchy 

African 
Timelines 

Shannon Entropy H = 2.67 H = 2.91 H = 3.70 H = 3.75 H = 3.81 
Standard Deviation SD = 0.093 SD = 0.081 SD =0.043 SD = 0.039 SD = 0.033 

 
Table 3. The Shannon entropies (in bits) of the histograms, and the standard deviations of the           

histogram column heights, for the GTTM profile and the four rhythm corpora. 
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Figure 10. The sub-symmetries present in the GTTM model and their fractal nature. The standard  
hierarchical fractal sub-symmetries (left), and some additional non-fractal sub-symmetries (right). 
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sub-pattern that possesses mirror-symmetry, i.e., is palindromic. The number of sub-
symmetries contained in a pattern has been shown to be a good predictor of human 
perception of the complexity of both auditory and visual patterns (Toussaint and Beltran 
2013). The entire GTTM pattern from pulses 1 to 16 is not symmetric. However, the sub-pattern 
from pulses 2 to 16 contains mirror symmetry about pulse 9, and hence is a large sub-
symmetry of length 15. However, the GTTM profile contains many more (smaller) sub-
symmetries. There are sub-symmetries of length 3 involving levels 1 and 2, such as between 
pulses 2 to 4, 6 to 8, 10 to 12, and 14 to 16 (shown as leaves of the tree in the left diagram), also 
involving levels 1 and 3, such as 4 to 6 and 12 to 14 (shown in the right diagram). In the right 
diagram there is also a sub-symmetry of length 3 between levels 1 and 4, between pulses 8 to 
10, and a sub-symmetry of length 5 between pulses 7 to 11, between levels 2 and 4. The reader is 
invited to discover the remaining sub-symmetries present. What is even more interesting 
about the GTTM profile is that the sub-symmetries in the left diagram (the standard GTTM 
hierarchy) have a fractal nature. In the case of the GTTM sub-symmetries the pattern from 
pulses 3 to 15 (levels 2–4) has the same structure as the two sub-patterns from pulses 2 to 8 and 
10 to 16 (levels 1–3). The sub-symmetries highlighted in the right diagram on the other hand do 
not have the fractal property. 

In the comparison of African and Western rhythm, a natural question concerns the 
relative prominence of the above features of meter in the families of rhythms under study. 
After all, it is logically possible for a histogram to reflect a pattern of alternating strong and 
weak beats without exhibiting any hierarchy other than at the two lowest levels sufficient for 
distinguishing between strong and weak beats (Figure 11, left). Such a profile represents one 
extreme of the GTTM definition: it contains the minimum amount of hierarchy (lacks the 
distribution and fractal symmetry properties) while still preserving the alternating property. It 
is also possible for a histogram to possess a hierarchy consisting of the same histogram bin 
heights present in GTTM (the distribution property), but arranged in such a manner as to 
have no alternations whatsoever between strong and weak beats (Figure 11, right). This profile 
represents another extreme of the GTTM properties inherent in the definition. Note that 
there are only two possible profiles with this property: the one in Figure 11 (right) and its 
mirror symmetric version in which the tallest bin lies at pulse 16 rather than pulse 1. The latter 
version is not explored in this study since it is a complete inversion of the GTTM profile in 
which the tallest bin is located at pulse 1. In general a corpus of rhythms will contain a pulse 
saliency histogram that contains a mixture of all these properties. The correlations between 
these histograms and those of GTTM and the four corpora are shown in Table 4. For 
Palestrina’s Pater Noster, the common-practice examples, and the German folk songs, both the 
Spearman and Pearson correlations are higher for the GTTM hierarchy than for meters with 
only the alternation property. On the other hand, for the African timelines the reverse is true 
for the Spearman correlation: for pure alternations rs = 0.845 with p < 0.00002, whereas for the 
GTTM hierarchy rs = 0.793 with p < 0.0002. These results suggest that meter in Western music 
courts the distribution property of GTTM, whereas the timeline ground model of meter in 
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Figure 11. The weights for regular alternations between strong and weak beats (alternation property) 

without possessing the GTTM distribution property (left), and the GTTM weights arranged to have the 
distribution property without any alternations (right). 

 

 GTTM  
Hierarchy 

Palestrina’s 
Pater Noster 

Common-
Practice  
Music 

German 
Folk Songs 

African 
Timelines 

GTTM  
Hierarchy 

- 
- 
- 
- 

rs = 0.930 
p < 0.00001 
 
rp = 0.955 
p < 0.0001 

rs = 0.937 
p < 0.000001 
 
rp = 0.959 
p < 0.0001 

rs = 0.930 
p < 0.00001 
 
rp = 0.973 
p < 0.000001 

rs = 0.793 
p < 0.0002 
 
rp = 0.774 
p < 0.0005 

Strong-Weak 
Alternations 
without 
GTTM  
Hierarchy 

rs = 0.935 
p < 0.000001 
 
rp = 0.783 
p < 0.0002 

rs = 0.874 
p < 0.000005 
 
rp = 0.663 
p < 0.003 

rs = 0.881 
p < 0.000003 
 
rp = 0.795 
p < 0.0001 

rs = 0.871 
p < 0.000006 
 
rp = 0.740 
p < 0.0005 

rs = 0.845 
p < 0.00002 
 
rp = 0.618 
p < 0.006 

GTTM Distri-
bution Proper-
ty without the 
Alternation 
Property 

rs = 0.069 
p < 0.399 
 
rp = 0.302 
p < 0.127 

rs = 0.074 
p < 0.392 
 
rp = 0.210 
p < 0.216 

rs = -0.123 
p < 0.326 
 
rp = 0.192 
p < 0.239 

rs = -0.034 
p < 0.450 
 
rp = 0.236 
p < 0.190 

rs = 0.186 
p < 0.245 
 
rp = 0.428 
p < 0.050 

 

Table 4. Spearman and Pearson correlation coefficients for alternations without the GTTM hierarchy 
(second row), and for the GTTM hierarchy (with the distribution property) without alternations (third 

row). For comparison the first row provides the correlations with the original GTTM profile. 

African music reflects more the alternation property of GTTM. This is visually evident from 
the histogram in Figure 4. 

Examination of the pulse saliency histogram of the African timelines in Figure 4 
suggests the following hierarchy. Apart from pulse 1, which dominates all other pulses by far, 
six other pulses stand out from the remaining pulses: two pulses are almost nonexistent 
(pulses 2 and 16), and four are notably higher than the rest: pulses 3, 7, 11, and 13. Pulse 7 is the 
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second highest, pulse 3 is the third highest, and pulses 11 and 13 are tied for fourth and fifth 
positions. These observations suggest two modifications of the GTTM model that may be 
more accurate as theoretical models of the metrical hierarchies of asymmetric African 
timelines. The first modification is obtained by shifting the columns of GTTM to match the 
heights of the African timelines as much as possible, while maintaining both the distribution 
and alternating properties of GTTM. Thus column 9 of GTTM moves to position 7, column 5 
of GTTM moves to position 3, and the two lowest levels of the hierarchy are placed so as to 
maintain the alternating property of GTTM. The resulting metric hierarchy is shown in 
Figure 12 (left). The correlations with the African timeline profile are shown in Table 5 with 
the title “GTTM Distribution with Timeline Placements” (rs = 0.908 with p < 0.000001 and rp = 
0.861 with p < 0.0001). The second modification is obtained by relaxing the distribution 
constraint such that the heights of the columns may be altered by discrete units, but the total 
number of discrete units used to define the GTTM weights (which number 31) remains the 
same. The GTTM model may thus be viewed as a distribution of 31 unit squares among the 16 

 

        
 

Figure 12. The weights for the GTTM distribution property with GTTM columns swapped to match 
the African timelines profile (left), and the weights adjusted to have the numerosity property to match 

the African timelines profile (right). 

 GTTM        
Hierarchy 
without      
Alternations 

Original 
GTTM     
Hierarchy 

Strong-Weak 
Alternations 
without  
GTTM         
Hierarchy 

GTTM     
Distribution 
with      
Timeline 
Placements 

GTTM    
Numerosity 
with       
Timeline 
Placements 

African 
Timelines 
Histogram 

rs = 0.186 
p < 0.245 
 
rp = 0.428 
p < 0.050 

rs = 0.793 
p < 0.0002 
 
rp = 0.774 
p < 0.0005 

rs = 0.845 
p < 0.00002 
 
rp = 0.618 
p < 0.006 

rs = 0.908 
p < 0.000001 
 
rp = 0.861 
p < 0.0001 

rs = 0.958 
p < 0.000001 
 
rp = 0.941 
p < 0.0001 

 

Table 5. Correlations of the African timelines profile with the GTTM profile and its four modifications. 
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pulse positions distributed according to several constraints regarding alternations, height 
columns, and fractal symmetries. This property, the cardinality of the unit squares, is here 
dubbed the numerosity of the profile. The second modification of the GTTM profile makes the 
minimum number of changes to the distribution constraint with timeline placement while 
maintaining the numerosity and alternation properties, and is shown in Figure 12 (right) titled 
“GTTM Numerosity with Timeline Placement.” Comparing the African timeline profile 
(Figure 4) with the profile of Figure 12 (left) shows that the main differences are that pulses 2 
and 16 are almost zero, and pulse 1 is considerably higher than all other pulses. The profile in 
Figure 12 (right) is obtained from the profile on the left by moving the unit square from pulse 2 
to pulse 1, to increase its domination, and moving the unit square from pulse 16 to pulse 11 in 
order to match the heights of pulses 11 and 13. 

It is worth noting in passing that as a byproduct of calculating both the Spearman and 
Pearson correlation coefficients in all the comparisons, numerous examples have been 
uncovered for which one is greater than the other, and vice-versa, where furthermore, a lower 
correlation sometimes yields a higher p-value, and vice-versa. These observations support the 
conclusions of Hauke and Kossowski (2011) concerning these two measures of correlation by 
providing new evidence from data in the domain of musical rhythm. However, in spite of the 
fact that the Pearson correlations are greater than the Spearman correlations in many of the 
tests, for the present application the Spearman rank correlation appears to be a more 
appropriate measure, since monotonic relations are more sensitive to hierarchical rankings 
than linear relations. 

Correlations between the pulse saliency histograms of rhythm corpora and the GTTM 
(or any other model), as well as entropy values, are of course not the only ways to measure the 
similarity between metrical hierarchies. Furthermore, these measures do not assess the 
amount of symmetry or depth present in the metric hierarchies. Visual inspection of the 
histograms themselves provides additional complementary insights into the structure of the 
African timeline hierarchy of Figure 4. The modification of GTTM in Figure 12 (right) that 
preserves the numerosity and alternation properties of GTTM, while maximizing the 
matching of the placements of the histogram columns at the expense of violating the 
distribution and fractal properties, is reproduced in enhanced form in Figure 13, with the 
addition of indications (in thick bold lines) of some of the remaining sub-symmetries and the 
remaining partial fractal structure. From a comparison of the GTTM histogram with the 
histogram in Figure 13 it is clear that GTTM has many more sub-symmetries. Table 6 lists the 
number of sub-symmetries of each length. GTTM has more short sub-symmetries of lengths 3 
and 5, and the African timeline profile has no long sub-symmetries of lengths 11, 13, and 15. 
Furthermore, the 4-level fractal in Figure 10 (left) between pulses 2 and 16 has been reduced to 
the 3-level fractal in Figure 13 (left) between pulses 4 and 10. It is well known that African 
timelines possess fewer symmetries than do Western rhythms. That is how they acquired the 
name “asymmetric” timelines (Rahn 1987). However, the number of sub-symmetries and the 
size of the fractals present in the pulse saliency histograms are two features that quantify the 
asymmetries. Symmetry has been used extensively in musical composition for centuries, but it  
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Length of Sub-Symmetry 3 5 7 9 11 13 15 
Number of Sub-Symmetries 
in GTTM Profile 

7 3 2 1 1 1 1 

Number of Sub-Symmetries 
in African Timeline Profile 

6 2 2 1 0 0 0 

 

Table 6. Number of sub-symmetries of varying lengths in GTTM and the idealized hierarchical meter 
for the African timelines. 
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Figure 13. The idealized hierarchical meter model for the African timelines obtained by modifying 
GTTM while preserving the numerosity and alternating properties of GTTM and maximizing the 

timeline placements, at the expense of violating the distribution property and losing some sub-
symmetries and fractal structure. 

is more difficult for the listener to perceive symmetries in the aural domain than for the 
composer to perceive them in the visual domain (Handel 2006). However, too much symmetry 
becomes uninteresting, and therefore much attention has been given to striking a balance 
between perfect symmetry and a more aesthetically pleasing asymmetry, or “broken” or 
“crippled” symmetry, as it is sometimes called (Anderson 1972; Feldman 1981; Don et al. 2010). 
For African rhythm it appears that the GTTM model is too symmetrical to correlate well with 
the timelines profile, and thus the “broken” symmetry in the profile of Figure 13 appears to be 
a better fit. 

Another noteworthy feature of the African timeline profile is the almost complete 
absence of onsets at pulses 2 and 16. The reason for this may be that since one of the main 
functions of timelines is their time-keeping role, the musicians need a clear signal as to where 
the beginning of the cycle (pulse No. 1) falls. This fundamental downbeat signal will be more 
perceivable (stand out from the crowd of beats) if it is surrounded on both sides by a silent 
pulse (pulse 2 just after the main beat, and pulse 16 just before). However, the same behavior is 
observed in the songs from Ghana, the Renaissance music example, and the German folk 
songs. Indeed only the common-practice music examples make use of these two pulse 
positions. It may be that the same reasoning applies to the German folk songs, but this is 
speculation that invites further research. It does not apply to Palestrina’s Pater Noster 
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represented in a 16-pulse cycle because this piece tends to ignore almost completely all the 
even-numbered pulses. 

Examination of the various properties of the GTTM definition helps to further characterize 
the differences between the Renaissance music of Palestrina, the common-practice music 
samples compiled by Palmer and Krumhansl, and the German folk songs in the Essen 
collection studied by Huron and Ommen. The pulse saliency histogram of Palestrina’s Pater 
Noster (Figure 2) is almost identical to the GTTM model in the sense of possessing all the 
fractal sub-symmetries of GTTM. The main difference is in terms of the relative difference in 
the heights of the histogram bins. For Pater Noster the even pulses are almost not used at all 
and pulses 3, 7, 11, and 15 are much less used than pulses 5, 9, and 13. It would be interesting to 
determine if this property holds for Palestrina’s music in general, or even for Renaissance 
music as a whole. 

The empirical pulse saliency histogram of the common-practice samples (Figure 3) may 
be idealized to the hierarchical meter model shown in Figure 14 (left). Apart from the height of 
the histogram bin at pulse 13, the remaining profile is for all practical purposes identical to 
that of GTTM. However, the fact that the height of pulse 13 is higher than pulse 9 alters the 
number of sub-symmetries present considerably, and destroys the fractal nature of the 
hierarchy, while preserving the alternation property. Interestingly the three heights of pulses 
5, 9, and 13 are collinear, introducing a different type of regular structure that compensates for 
losing some of the symmetries. This pattern suggests that common-practice music places 
more emphasis on the last (fourth) quarter note than on the third quarter note in the middle 
of the timespan, as do Palestrina’s Pater Noster, the German folk songs, and GTTM, where the 
quarter note at pulse 9 is used more frequently than the quarter notes at pulses 5 and 13. To 
speculate further, a tantalizing similarity is suggested between the frequency patterns of these 
three quarter notes and the accents (stresses) of three-syllable words in the English and 
French languages. English tends to stress the middle syllable (as in the English word 
“production”), whereas French tends to place the stress on the third syllables (as in the French 
word “production”). The metric hierarchy of the common-practice music appears to match 
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Figure 14. The idealized hierarchical meter models for the common-practice music examples of   
Palmer and Krumhansl (left), and the German folk song data of Huron and Ommen (right). 
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the French pattern of syllable stresses, whereas the metric hierarchies of Pater Noster, the 
German folk songs, and GTTM appear to match the English syllabic stress pattern. The 
commonalities of rhythm in language and music have been investigated previously (Huron 
and Ollen 2003; Patel and Daniele 2003a and 2003b). However, these authors compared the 
complexity of English and French language with English and French music using the 
normalized pairwise variability index (nPVI) as a measure of rhythm complexity. It would be 
interesting to determine if there also exist relations between music and language with respect 
to the location of the stresses in musical meters and words, respectively. More specifically, the 
fact that the German folk songs place emphasis towards the end of the cycle, akin to the 
French accents in language, raises the perhaps strange question of whether the French 
language influenced the meter of common-practice music? 

The empirical pulse saliency histogram of the Essen German Folksong Collection 
(Figure 5) may be idealized to the hierarchical meter model shown in Figure 14 (right). This 
hierarchy is uniquely different from GTTM and the profiles of all the other pulse saliency 
histograms examined here, in that it contains none of the left-right mirror sub-symmetries 
which are a hallmark property of GTTM, while still completely preserving the alternation and 
fractal properties of GTTM. The sub-symmetries are broken by the fact that, at every level of 
the hierarchy that connects a “parent” pulse to its two “offspring” pulses, the height of the 
offspring on the right is higher than the offspring on the left (indicated in the figure by dashed 
lines). Thus, for pulses 2, 3, and 4, the height of column 4 is greater than the height of column 
2. Similarly, for pulses 6, 7, and 8, the height of column 8 is greater than the height of column 
6. For pulses 3, 5, and 7, the height of column 7 is greater than the height of column 3. At the 
highest level (for pulses 5, 9, and 13) the height of column 13 is greater than the height of 
column 5, and so on. It is as if the GTTM hierarchy has been rotated in a counterclockwise 
direction by some angle. Therefore in spite of this “rotation” the hierarchy completely 
preserves the fractal property of GTTM. Furthermore, although the hierarchy does not 
possess the left-right mirror sub-symmetries, it does possess more complex sub-symmetries 
that involve simultaneous translations in a northeasterly direction accompanied by a dilation. 
Thus the triangle determined by pulses 6, 7, and 8, is larger than the triangle determined by 
pulses 2, 3, and 4. Similarly, the triangle determined by pulses 11, 13, and 15, is larger than the 
triangle determined by pulses 3, 5, and 7. These types of symmetries imply that the German 
folk songs are rhythmically more complex than the rhythms of Renaissance and common-
practice music, as well as those implied by the GTTM profile. They also suggest that the 
German folk songs tend to place more emphasis on the notes appearing at the ends of the sub-
symmetries. It would be interesting here also to explore the relationship between this 
structure in music syllable stress patterns in the German language. 

Another property of rhythms that may be used as a feature for distinguishing between 
families of rhythms is the preference for utilizing pulse locations in the first half of the 
timespan (cycle). This property can be measured by considering the normalized histograms as 
probability distributions, and calculating their expected values, which are equivalent to the 
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centers of gravity of the normalized histograms. In a perfectly balanced meter, in which the 
number of onsets that occur in each half-measure is the same, the expected value should be 
8.5. The expected values, in increasing order, are: (1) Pater Noster = 7.03, (2) German folk songs = 
7.43, (3) African timelines = 7.61, (4) GTTM hierarchy = 7.71, and (5) common-practice music = 
8.09. Common-practice music is the closest to being perfectly balanced, the Pater Noster has 
the most notes in the first half-measure, and the African timelines are almost 
indistinguishable from the GTTM hierarchy. Hence this is another feature of the pulse 
saliency histograms that the African timelines and GTTM have in common. 

The shapes of the histograms also highlight the differences between the rhythms of the 
Ghanaian and Western songs. These differences are most evident in the first half (eight 
pulses) of the timespans. The most salient pulses in the Pater Noster, the common-practice 
music samples, and the German folk songs are the first, fifth, ninth, and thirteenth pulses, 
whereas in the Ghanaian songs they are the first, fourth, seventh, and ninth. The inter-onset 
intervals of the former are 4-4-4, whereas as for the latter they are 3-3-2. These differences are 
an indication that the rhythms of the Ghanaian songs tend to be more syncopated than their 
Western counterparts, and serve to distinguish African music from Western music more ably 
than the possession of hierarchical meter. While the results of the pilot study with the three 
songs from Ghana are suggestive, they clearly represent a considerably limited and 
unrepresentative sample of the traditional music of Ghana, let alone the music of Sub-
Saharan Africa. Not only is a sample of size three rather small, but also, these songs belong to 
the genres of maiden songs and cradle songs, and as the histograms show, they exhibit 
considerable differences from each other. Similar tests should be made with much larger 
corpora of songs belonging to a greater variety of genres before more general conclusions can 
be made about the rhythmic aspects of the melodies of traditional African songs. 
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APPENDIX  

The 34 African, Afro-Cuban, and Afro-American rhythm timelines used in this study are 
shown in box notation. Each pulse (box) takes on one unit of time. The marked boxes are 
sounded, and the empty boxes are silent pulses (rests). The names used to identify these 
timelines are for convenience only, and although they are commonly found in Western 
media, no cultural ownership or chronological priority is intended by their application. 

 

 


