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       I. INTRODUCTION 

he normalized pairwise variability index (nPVI) is a measure of the average 

variation (contrast) of a set of distances (durations) that are obtained from 

successive adjacent ordered pairs of events. It was originally conceived for measuring 

the rhythmic differences between languages on the basis of vowel length (Grabe and 

Low 2002), and several successful applications in this domain have been realized 

(Gibbon and Gut 2001; Olivo 2011). Asu and Nolan (2005) concluded that the nPVI of 

the syllable durations was appropriate for measuring the complexity of the Estonian 

language. It has also been applied to the determination of the cognitive complexity of 

using text-entry systems (Sandness and Jian 2004). A review of the history, rationale, 

and application of the nPVI to the study of languages is given by Nolan and Asu 

(2009). More recently, the measure has also been employed successfully to compare 

speech rhythm with rhythm in music (McGowan and Levitt 2011; London and Jones 

2011; Patel and Daniele 2003; Huron and Ollen 2003; Daniele and Patel 2004). It has 

been suggested by London and Jones (2011) that the nPVI could become a useful tool 

for musical rhythm analysis as such. Indeed, it has already informed several questions 

about music as well as the interplay between music and language (McDonough et al. 

2007). It has been used successfully to compare rhythm in musical scores with their 
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performances (Raju, Asu and Ross 2010), and it can distinguish between 

compositional styles in nineteenth-century French and German art song (VanHandel 

2006; VanHandel and Song 2009; see also Dalla Bella and Peretz 2005). Furthermore, 

using English and Japanese as a case study, it has been demonstrated that a composer’s 

native language may influence her or his musical compositions (Sadakaka et al. 2004). 

In the domain of psychology, the nPVI has provided evidence that there exists a 

“common code” of emotional expression in speech and music (Quinto 2013).  

One goal of the present study is to determine how well the nPVI correlates with 

various dimensions of musical rhythm complexity, ranging from human performance 

and perceptual complexities to mathematical measures of metric complexity and 

rhythm irregularity. A second goal is to determine to what extent the nPVI is capable of 

discriminating between short, symbolically notated, durational patterns that occur in 

musical rhythms, metric frames, genres, styles, and cultures, as well as across strictly 

non-musical “rhythms” such as the highly irregular mark patterns of Golomb rulers 

(discussed in Section III). It is shown that the nPVI suffers from several shortcomings 

when it comes to modelling metric and rhythmic complexity in the context of short 

symbolic rhythmic patterns such as sub-Saharan African bell patterns, Arabic rhythms, 

Rumanian dance rhythms, and Indian talas. Nevertheless, comparisons with previous 

experimental results reveal that the nPVI correlates moderately with human 

performance complexity. The index is also able to discriminate between almost all the 

families of rhythms tested. However, no highly significant differences were found 

between the nPVI values for binary and ternary musical rhythms, partly mirroring the 

findings by Patel and Daniele (2003) for language rhythms. In addition, a modification 

of the nPVI is proposed that incorporates the underlying meter, and which correlates 
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highly with two measures of human performance complexity for musical rhythms that are 

syncopated. 

II. CHANGE AS A MEASURE OF COMPLEXITY 

Nick Chater (1999, 287) suggests that judgments of complexity are akin to 

judgments of irregularity. Since a rhythm consists of a pattern of inter-onset intervals, 

one way to measure the irregularity of the rhythm is by measuring the irregularity of 

the intervals that make up the rhythm. The standard deviation, used in statistics and 

probability, is a widely used measure of the dispersion of a random variable. When the 

random variable is the size of the inter-onset intervals it becomes a measure of 

irregularity, and has thus been used frequently in speech and language studies. 

However, musical rhythm and speech are not static; they are processes that unfold in 

time, and the standard deviation measure “lifts” the intervals out of their original 

order, disregarding the relationships that exist between adjacent intervals. A better 

measure of variability across time should incorporate change in the durations of 

adjacent intervals. Measures of change have been used to characterize the complexity 

of binary sequences in the visual perceptual domain. Indeed, Psotka designed a 

measure called syntely to gauge how much the structure of the early portions of a 

sequence influence the terminal sections, or “the strength of stimulus continuation” 

(1975, 436). Furthermore, Aksentijevic and Gibson (2003, 2012) characterized 

psychological complexity as change: “Structural information is contained in the 

transition from one symbol (or element) to another and not in the symbols themselves” 

(2012, 1). The nPVI is a measure of variability that attempts to capture this notion of 

change. Grabe and Low (2002) define the nPVI for a rhythm with adjacent inter-onset 

intervals (IOIs) as 
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where m is the number of adjacent vocalic intervals in an utterance, and dk is the 

duration of the kth interval. Translating this terminology to the musical rhythmic 

domain converts the vocalic intervals to the adjacent IOIs. Notably, Patel (2008, 133) 

laments the use of the term “variability” for the nPVI because, as he rightly points out, 

it is fundamentally a measure of temporal contrast between adjacent durations, rather 

than variation, and the two measures are not monotonically related (i.e., an increase (or 

decrease) in one does not imply an increase (or decrease) in the other). Consider the 

two durational patterns A = [2-5-1-3] and B = [1-3-6-2-5]. The rhythm A has a lower 

standard deviation than B (1.708 versus 2.074), whereas it has a higher nPVI value 

(106.3 versus 88.1). In spite of anomalies such as these, the results presented below 

indicate that in many musical contexts the two measures are highly and statistically 

significantly correlated.  

To clarify the close relationship that exists between the standard deviation and 

the nPVI, consider a sequence of three adjacent inter-onset intervals a, b, c such that a 

+ b + c = 1, and a = c, and refer to Figures 1 and 2. The two measures are plotted as a 

function of b, the duration of the middle interval. Both measures take on their 

minimum value (zero) when the three intervals are equal, and both take on their 

maximum values when b is either zero or one. Also both functions decrease 

monotonically from b = 0 to 1/3, and increase monotonically from b = 1/3 to 1. 

However, whereas the standard deviation varies linearly, the nPVI does not. The nPVI 

function is slightly convex from b = 0 to 1/3, and slightly concave from b = 1/3 to 1. 

The only substantial difference between the two curves is in the regions near their 

maximum values at the extremes of b. The nPVI takes on the same value (200) for b = 
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0 and b = 1, whereas the standard deviation is almost twice as large for b = 1 than for b 

= 0. Consider two IOI sequences: A = (0.15, 0.7, 0.15) and B = (0.45, 0.1, 0.45). The 

nPVI regards these two sequences as having almost equal variability: nPVI(A) = 130 

and nPVI(B) = 127. However, their standard deviations are quite different: SD(A) = 

0.32 and SD(B) = 0.20.  

 

Figure 1. The standard deviation as a function of b for a+b+c=1 and a=c 

 
 

Figure 2. The nPVI as a function of b for a+b+c=1 and a=c 

 

 

 
III. METHOD AND DATA 

Several sets of rhythms (both musical and non-musical), notated as binary 

sequences, were collected, including various families of synthetic rhythms (random 
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and systematic), rhythms from India, the sub-Saharan African diaspora, the Arab 

world, Rumania, as well as a collection of Golomb ruler patterns. Some had been 

previously evaluated experimentally according to several measures of human 

performance and perceptual complexities. The nPVI values and standard deviations of 

the IOIs of all rhythms were calculated. These values yielded, for each data set, two 

orderings (rankings) of the rhythms. These orders were then compared with those 

produced by the remaining measures using Spearman rank correlation coefficients and 

Kolmogorov-Smirnov tests.2  

The Data Sets Used 

Several researchers have carried out listening experiments with collections of 

artificially generated rhythms in order to test several hypotheses about the mental 

representations of rhythms. The experiments done by Povel and Essens (1985), 

Shmulevich and Povel (2000), Essens (1995), and Fitch and Rosenfeld (2007) used 

three data sets of rhythms that provided measures of human perceptual and 

performance complexities for each rhythm. The three data sets are briefly described in 

the following. For further details and listings of all the rhythms (in box notation) the 

reader is referred to the original papers. All the rhythms in these three data sets consist 

of time spans (measures, cycles) of sixteen unit pulses. 

The Povel-Essens data. This data comprises thirty-five rhythms, all of which 

contain nine attacks (onsets). They all start with an attack on the first pulse, and end 

with a long interval [x . . .]. The rhythms are made up of all possible permutations of 

the nine IOIs {1,1,1,1,1,2,2,3,4}, and do not resemble the rhythmic timelines used in 

                                                                    
2 The Spearman rank correlation coefficient is a measure of how well two ranked orders of elements 
agree with each other; that is, the degree to which two variables are related monotonically (Spearman 
1904). The Kolmogorov-Smirnov test is used here to measure the distance between two empirically 
estimated distributions (Conover 1971, 295–301). 
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traditional music. Every rhythm in the collection has five intervals of duration 1, two 

of duration 2, one of duration 3, and one of duration 4. 

The Essens data. This data set consists of twenty-four rhythms, in which the 

number of onsets varies between eight and thirteen, and is generally larger than that 

of the Povel-Essens rhythms. All the rhythms also start with an attack on their first 

pulse. Like the rhythms in the Povel-Essens data, these rhythms bear little 

resemblance to the rhythms used as timelines in musical practice. 

The Fitch-Rosenfeld data. This data set consists of thirty rhythms, in which 

the number of onsets is smaller than in the rhythms of the preceding two data sets; 

six rhythms have four onsets and the rest have five. Also noteworthy is that unlike 

the other two data sets, seventeen rhythms possess a silent downbeat (i.e., they start 

on a silent pulse; Huron 2006, 200). Furthermore, in contrast to the two data sets 

described above, these rhythms were “composed manually” in such a way as to vary 

the amount of syncopation present in the rhythms, as measured by Fitch and 

Rosenfeld’s implementation of the syncopation measure of Longuet-Higgins and Lee 

(1984). See also the related relevant work by Smith and Honing (2006). Fitch and 

Rosenfeld (2007) did not indicate, and perhaps did not appear to realize, that most of 

the rhythms generated (or their cyclic rotations) are in fact rhythmic patterns used in 

practice in sub-Saharan African and Indian music. Therefore this data set, although 

generated algorithmically, differs widely from the Povel-Essens and Essens data sets 

in that it reflects real living rhythms and contains rhythms with a silent first pulse. 

Random rhythms. To gain insight into the properties of musical rhythms used 

in practice it is helpful to compare them with randomly generated rhythms. For part 

of his study of rhythmic complexity measures, Thul (2008, 58) generated the fifty 

random 16-pulse rhythms listed in his Table 4.7. The rhythms were obtained by 
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programming a random number generator to simulate “flipping an unbiased coin” 

sixteen times. Then “heads” was associated with an onset, and “tails” with a silent 

pulse. The twenty-seven rhythms from this list that started with an onset were chosen 

for comparison with the other data sets in this study.  

North Indian talas. In Indian classical music a tala (also taal or tal) is a 

cyclically recurring clap pattern of fixed length that corresponds somewhat to the 

concept of meter in Western music, timeline in Sub-Saharan music, or compás in the 

flamenco music of southern Spain. Although talas may not be heard or even 

perceived, they function as metric frames, were evolutionarily selected by music 

scholars, and thus form part of the Indian music theory consciousness. It is therefore 

interesting, especially from a scientific point of view, to compare them with similar 

concepts in other cultures. Clayton (2000) provides an in-depth analysis of talas and 

their role in North Indian classical music. The twelve North Indian talas used here 

were taken from his Example 5.1 (58–59). For a detailed comparison of North Indian 

talas and sub-Saharan African timelines, see Thul and Toussaint (2008b). 

South Indian talas. The Carnatic music of South India is also based on 

rhythmic cycles. One of these systems consists of thirty-five sulaadi talas (Morris 

1998). Five of these talas are made up of single durations; therefore, the nPVI and 

standard deviation are not defined for them. The data used in this study consisted of 

the other thirty talas.  

Desi talas. A thirteenth-century Indian manuscript written by Sarngadeva lists 

130 talas called desi talas, which may be found in Johnson (1975, 194; see also 

Morris 1998). Fourteen of these are isochronous rhythms that yield nPVI and 

standard deviation values of zero. Since these entries create ties in the rankings and 

inflate the Spearman rank correlation coefficients, they were removed, leaving 116 
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irregular desi talas for the comparisons listed in Table 1. The desi talas have the 

greatest range of pulses (3 ≤ n ≤ 71) and onsets (2 ≤ k ≤ 19) of all the data sets used 

in this study. Thus they provide a good data set with which to study how the nPVI 

varies as a function of k and n. Not surprisingly, higher values of n tend to have more 

onsets. The Spearman rank correlation (denoted by r throughout) bears this out: r = 

0.68 with p < 0.000001, where p denotes the significance level. The number of onsets 

relative to the number of pulses, also called the note density (Cerulo 1988), may be 

considered to be a mild contributing factor of rhythm complexity. However, for the 

desi talas the nPVI and k yield a low but significant negative correlation: r = -0.2 

with p < 0.015. It appears that an increase in the number of onsets tends to decrease 

the contrast between the adjacent IOIs. On the other hand, the nPVI does not appear 

to be correlated with the number of pulses n (r = 0.08, p < 0.18). 

Sub-Saharan African timelines. Agawu (2006, 1) defines a timeline as a 

“bell pattern, bell rhythm, guideline, time keeper, topos, and phrasing referent,” and 

characterizes it as a “rhythmic figure of modest duration that is played as an ostinato 

throughout a given dance composition.” Most timelines used in the sub-Saharan 

African diaspora employ a cycle of twelve (ternary) or sixteen (binary) pulses. 

Perhaps the most distinctive of these are the binary and ternary “signature” timelines 

with five onsets and durational patterns [3-3-4-2-4] and [2-2-3-2-3], respectively 

(Toussaint 2011). In the first study thirty-nine ternary and thirty-seven binary sub-

Saharan African timelines were taken from the papers by Rahn (1987, 1996) and 

Toussaint (2005), as well as the articles referenced therein. The ternary rhythms had 

twelve pulses and the number of onsets varied between four and nine. The binary 

rhythms had sixteen pulses and the onsets varied between three and ten. In the 

second study only the timelines that had five onsets were used. 
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Euclidean rhythms. One of the oldest and most well known algorithms in the 

field of computer science, identified in Euclid’s Elements (circa 300 BCE) as 

Proposition II in Book VII, is known today as the Euclidean algorithm. It was 

designed to compute the greatest common divisor of two given integers (see Franklin 

1956). Donald Knuth calls this algorithm the “granddaddy of all algorithms, because 

it is the oldest nontrivial algorithm that has survived to the present day” (1998, 335). 

The idea behind the Euclidean algorithm is remarkably simple: repeatedly replace the 

larger of the two numbers k and n by their difference, until both are equal. The final 

number thus obtained is the greatest common divisor of k and n. Consider the two 

numbers k = 5 and n = 8. Subtracting 5 from 8 yields 3; 5 minus 3 equals 2; 3 minus 

2 equals 1; and finally, 2 minus 1 equals 1. Therefore, the greatest common divisor of 

5 and 8 is 1. In Toussaint (2005) it was shown that by associating n with the number 

of pulses in the cycle, and k with the number of onsets (attacks), the Euclidean 

algorithm may be used to generate most rhythm timelines used in traditional music 

found all over the world. The key lies in extracting not the answer to the original 

problem, but rather the structure observed in the repeated subtraction process used to 

obtain the answer. This process is illustrated in Figure 3 with k = 5 and n = 7. The 

figure visually illustrates the following operations performed repeatedly by the 

Euclidean algorithm. First the onsets and silent pulses are ordered one after the other 

as in (a). Then in the repeated subtraction phase, the silent pulses are moved to the 

positions as shown in (b). If there are more silent pulses than onsets then the number 

of silent pulses moved is the same as the number of onsets. This subtraction process 

is continued until the number of columns remaining is either zero or one, as in (c). 

Note that if k divides evenly into n the number of columns remaining will equal zero 

and the resulting rhythm will be isochronous (i.e., not just maximally even, but  
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Figure 3. Generating a Euclidean rhythm with k = 5 and n = 7 

 

 

perfectly even). The resulting columns are then concatenated as in (d) and (e) to 

obtain the final rhythm in (f). In other words, the pulses in (c) are read from top to 

bottom and left to right in order to spread the onsets out as evenly as possible. This 

particular Euclidean rhythm denoted by E(5,7) = [x . x x . x x] = (21211) is the 

Nawakhat pattern, a popular Arabic rhythm (Standifer 1988). In Nubia it is called the 

Al Noht rhythm (Hagoel 2003). Note that any rotation of this rhythm such as (12112) 

or (21121), and so forth, is also a Euclidean rhythm. We say that the algorithm in fact 

generates a Euclidean necklace. In theoretical computer science, Euclidean rhythms, 

also known as Euclidean strings (Ellis et al. 2003), have been discovered 

independently in different contexts, such as calendar leap year calculations, drawing 

digital straight lines, and word theory. In music theory, they are called maximally 

even sets.3 Here the terms maximally even and Euclidean are used interchangeably. 

In the experiments described here the forty-six Euclidean rhythms used were taken 

from Toussaint (2005) and the references therein. Since Euclidean rhythms may be 

generated by such a simple rule, it follows that they have very low Kolmogorov (or 

information theoretic) complexity (see Chaitin 1974, and Lempel and Ziv 1976).  

                                                                    
3 For a sampling of this literature, see Amiot (2007), Clough and Douthett (1991), Douthett and Krantz 
(2007) and Toussaint (2005, 2013). 
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Furthermore, by their property of maximally evenly distributed onsets, the rhythms 

tend to maximize repetitiveness and minimize contrast. They are, therefore, expected 

to have relatively low nPVI values, and furnish an extreme data set for comparison 

with the other data sets. This property also permits the robustness of the nPVI to be 

tested across widely differing data sets. 

Rumanian folk dance rhythms. Proca-Ciortea (1969) investigated over 1,100 

Rumanian folk dances from which fifty-six rhythms were extracted. The rhythms, 

which are mostly binary, consist mainly of eighth and quarter notes. Six of these 

rhythms were either isochronous or had a silent first pulse, and were deleted.  The 

remaining fifty rhythms were used in this study. 

Arabian wazn. Rhythmic patterns in Arabian music are known as wazn. They 

may be compared to sub-Saharan African timelines in structure and function, 

although their IOI patterns are quite different. Whereas the African timelines use 

time spans (measures) that are composed predominantly of twelve and sixteen pulses, 

the Arabian wazn employ a wide variety of different values. The data used here were 

composed of nineteen wazn taken from the book by Touma (1996). The longest wazn 

was the samah consisting of nineteen onsets in a time span of thirty-six pulses, with 

an IOI pattern given by [2-1-1-4-1-1-1-1-2-4-2-1-1-1-1]. Compared to the African 

timelines, the Arabian wazn appear to be more irregular. 

Optimal Golomb rulers. A Golomb ruler, also referred to as a Sidon set by 

Erdős and Turán (1941), is a ruler that has “few” marks, and which thus permits 

measuring distances only between pairs of these marks. Furthermore, to increase the 

versatility of a Golomb ruler with a fixed number of marks, it is desirable to be able 

to measure as many distinct distances as possible.4 The problem arises in several  

                                                                    
4 See Alperin and Drobot (2011) for a clear and accessible introduction to the theory of Golomb rulers. 
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Figure 4. A perfect optimal Golomb ruler with four marks (left) and the nPVI for the 20 shortest 
optimal Golomb rulers (right) 
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applications such as the need for distributing expensive radio telescope elements 

across a stretch of land so as to better receive signals from outer space. An optimal 

Golomb ruler with k marks is one such that no other shorter Golomb ruler with k 

marks exists. Furthermore, if the Golomb ruler measures all the distances ranging 

from one to the length of the ruler (one time each) it is called perfect. For example, 

the ruler shown in Figure 4 (left) with marks at points 0, 1, 4, and 6 is a perfect and 

optimal Golomb ruler. The length of the ruler is six, the pairwise distances realized 

are the integers in the set {1, 2, 3, 4, 5, 6}, and it yields the “rhythm” [x x . . x . ] with  

durational IOI pattern [1-3-2]. The twenty shortest optimal Golomb rulers, starting 

with the 3-mark ruler (0, 1, 3), were obtained from Shearer (2012). The motivation 

for using these rulers in the experiments is that, as a byproduct of their design to have 

all their pairwise distances distinct, they yield “rhythms” that are extremely irregular. 

Since the existence of patterns that emerge from regularities (or repetitions) is 

considered a necessary ingredient of “beautiful” music (Kivy 1993), Golomb rulers 

have been used to compose “ugly” music (Rickard 2011).5 Therefore, Golomb rulers 

provide another extreme data set useful for the comparative analysis of the nPVI and  

                                                                    
5 See Freeman (1997) for a discussion of the close relationships that exist between Golomb rulers and 
sequence irregularity. 
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for gaging the irregularity of rhythms used in different styles of music. The twenty 

rulers used here had IOIs that varied in number between three and twelve. The ruler 

with the highest nPVI value of 106.3 in Figure 4 (right) was the fourth in the list, 

with marks at (0, 2, 7, 8, 11) yielding IOIs [2-5-1-3]. Golomb rulers are closely 

related to Z-related sets investigated for some time in musical pitch-class theory 

(Goyette 2012).6 

Mathematical measures of complexity. In the study of speech rhythm, a 

measure of variability that has often been used for the vocalic or consonantal interval 

durations is the classical statistical measure of standard deviation.7 Since the nPVI 

was originally proposed as a method for avoiding the drawbacks of the standard 

deviation, the two measures were compared to determine the extent of their 

differences. The nPVI was also compared with Keith’s measure of metrical 

complexity. In the musical domain, Michael Keith (1991) proposed a measure of 

meter complexity based on a hierarchical partition of a meter into sub-meters, and on 

the frequency of alternations between binary and ternary units within different levels 

of this hierarchy. In his book, he lists seventy-six metrical patterns with the number 

of pulses as high as twenty along with their complexity values (1991: 129). 

For a string of symbols S, Keith’s measure of meter complexity, denoted by 

C(S), is defined for meters consisting of durational patterns made up of strings of 2s 

and 3s, such as the African signature pattern also called  fume-fume [2-2-3-2-3] and the 

guajira flamenco compás [3-3-2-2-2] (also Bernstein’s “America”; see London 1995). 

Keith first partitions S into any string of disjoint subunits. At the lowest level these two 

rhythms are partitioned into the sub-units [2][2][3][2][3] and [3][3][2][2][2],  

                                                                    
6 Soderberg (2013) recounts personal correspondence with David Lewin in 1994, in which Lewin 
makes the connection between Golomb rulers and what he called “uniformly flat” Z-sets. 
7 See, e.g., the papers by Ramus, Nespor, and Mehler (1999), and Yoon (2010). 
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respectively. At this level, the complexity of an individual [2]-unit is 2, and that of a 

[3]-unit is 3. For a given partition the complexity of the string C(S) is the sum of the 

complexities of the sub-units, so at this level the complexities of the fume-fume and 

guajira are the same: 2+2+3+2+3 = 3+3+2+2+2 = 12. Thus at the level of individual 

units Keith’s measure makes no distinction between distributions of IOIs within a 

cycle. Keith defines a unit as one or more identical contiguous sub-units. Thus another 

possible pair of partitions for these two rhythms consists of [2-2][3][2][3] and [3-3][2-

2-2], respectively. The complexity value of a unit U consisting of a number of 

identical sub-units H is defined as C(U) = max{#sub-units, C(H)}, where #sub-units 

denotes the number of sub-units. For example, the complexity of the unit [2-2] is 

max{2, 2} = 2, and that of the unit [2-2-2] is max{3, 2} = 3. If we denote a partition of 

S by SU, then the complexity of a given partition of S into units, denoted by C(SU), is 

the sum of the complexities of the units C(U). Therefore, for this partition C(SU)(fume-

fume) = 2+3+2+3= 10 and C(SU)(guajira) = 3+3 = 6. Finally, the complexity of the 

sequence C(S) is the minimum complexity, minimized over all possible partitions; 

C(S)  = min{C(SU)}. In our example the guajira admits several other partitions such as 

[3-3][2-2][2], [3-3][2][2-2], [3][3][2-2][2], and [3][3][2][2-2], the complexities of 

which are, respectively, 7, 7, 10, and 10. Therefore, the final complexities are C(fume-

fume) = 10 and C(guajira)  = 6. 

A scatter-plot of the nPVI values as a function of Keith’s complexity measure 

for the seventy-six metric patterns taken from Michael Keith’s book is shown in 

Figure 5. Although the two measures are highly and significantly correlated (r = 0.65, 

p < 0.01), the relationship between the two measures is dominated by vertical and 

horizontal alignments. Most noticeable is that for a complexity value of 5, there are 
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numerous rhythms with nPVI values ranging from zero to 40.8 

 

Figure 5. The nPVI as a function of Keith's measure of metric complexity 

 
 

 

IV. RESULTS 

Correlation Between nPVI and Other Complexity Measures 

The Spearman rank correlation coefficients and statistical significance values 

obtained by comparing the various complexity measures with the nPVI for all the data 

sets are listed in Table 1. Those with statistically significant p-values are highlighted in 

bold black, and those that are either uncorrelated or insignificantly correlated are 

shown in red. 

A comparison of the nPVI with the human performance and perceptual 

complexities obtained with the three data sets of Povel-Essens, Essens, and Fitch-

Rosenfeld yields rather curious and mixed results. In these studies, the performance 

complexity refers to the difficulty of accurately reproducing the rhythm by tapping. 

 

                                                                    
8 For a detailed comparison of Keith’s measure of complexity with scores of other complexity measures, 
see Thul and Toussaint (2008a) and Thul (2008). 
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Table 1.  Spearman rank correlations between nPVI and various complexity measures 

Complexity Measure nPVI 
Performance Complexity (Povel-Essens) r = -0.006  p < 0.5 
Perceptual Complexity (Povel-Essens) r = 0.100  p < 0.27 
Standard Deviation (Povel-Essens) Stan. Dev. = 0 
Performance Complexity (Essens) r = 0.047  p < 0.42 
Perceptual Complexity (Essens) r = 0.006  p < 0.49 
Standard Deviation (Essens) r = 0.67    p < 0.01 
Performance Complexity (Fitch-Rosenfeld) r = 0.40    p < 0.02 
Standard Deviation (Fitch-Rosenfeld) r = 0.57    p < 0.01 
Keith's Complexity Measure - C(S) r = 0.65    p < 0.01 
Stan. Dev. (12 North Indian Talas) r = 0.73    p < 0.01 
Stan. Dev. (30 South Indian Talas) r = 0.67    p < 0.01 
Stan. Dev. (116 Irregular Desi talas) r = 0.77    p < 0.01 
Stan. Dev. (14 African; k=5, n=12) r = 0.80    p < 0.01 
Stan. Dev. (16 African; k=5, n=16) r = 0.86    p < 0.01 
Stan. Dev. (39 African; k=4-9, n=12) r = 0.22    p < 0.09 
Stan. Dev. (37 African; k=3-10, n=16) r = 0.56    p < 0.01 
Stan. Dev. (46 Euclidean Rhythms) r = 0.55    p < 0.01 
Stan. Dev. (28 Random Rhythms; n=16) r = 0.55    p < 0.01 
Stan. Dev. (50 Rumanian Folk Rhythms) r = 0.35    p < 0.01 
Stan. Dev. (19 Arabian Wazn)       r = 0.31    p < 0.1 
Stan. Dev. (20 Golomb Rulers)       r = 0.31    p < 0.1 

 

 
The performance and perceptual complexity judgments in the Povel-Essens and Essens 

data sets do not correlate at all with the nPVI values. Furthermore, in the case of the 

Povel-Essens data, the nPVI cannot even be compared with the standard deviation 

because the standard deviation of the IOIs is the same for all the rhythms due to the 

fact that they all consist of permutations of the intervals in the set {1,1,1,1,1,2,2,3,4}. 

Thus the Spearman rank correlation coefficient is not even computable for this type of 

data. The Fitch-Rosenfeld rhythms tell a different story, however. Here, the human 

performance complexity is moderately but statistically significantly correlated with the 

nPVI (r = 0.40 with p < 0.02), as is the standard deviation (r = 0.57 with p < 0.01). As 

pointed out earlier, the Fitch-Rosenfeld rhythms differ from the other data sets in that 

seventeen of the thirty rhythms have a silent first pulse. In order to compute the nPVI 

the first IOI in the sequence was taken to be the silent interval. This is equivalent to 

making the first pulse of every rhythm an onset, and will be considered in more detail 
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in the section describing the proposed refinement of the nPVI. For the Essens rhythms, 

the standard deviation is also highly statistically significantly correlated with the nPVI 

(r = 0.67, p < 0.01).  

 

Discrimination Between Binary and Ternary Rhythms 

Patel and Daniele (2003) compared the rhythm of English and French music 

and language using the nPVI of the lengths of the notes in music, and the vocalic 

durations in speech, respectively. In both cases they found that the nPVI values for 

British English were greater than for French. To test the influence of musical meter on 

the nPVI values of note durations and to account for the differences observed, they 

separated their musical themes into those with binary and ternary meters, and found 

that the nPVI values of the binary and ternary music corpora did not differ 

significantly. Their corpora consisted of 137 English musical themes from composers 

such as Elgar, Delius, and Holst, and 181 French musical themes from composers that 

included Debussy, Honegger, and Ravel. These results motivated the exploration of 

whether there is any significant difference between the nPVI values in a completely 

different musical context: African rhythm instead of classical European music, and 

note durations replaced by IOIs. For this purpose two groups of rhythms were compiled 

from a collection of books and journals consisting of thirty-seven binary 16-pulse 

timelines, and thirty-nine ternary 12-pulse timelines. The average nPVI values are 

shown in Figure 6, where the error bars indicate one standard deviation above and below 

the mean. To test whether the means are statistically significantly different the Student’s 

t-test was used (Press et al. 1992, 616). The most notable aspect is that the two means 

differ little in absolute terms compared to the variability within each group, mirroring 

somewhat the findings by Patel and Daniele (2003). Indeed, the one-sided t-test yielded a 
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value of t = 1.542, with p = 0.0636. On the other hand, the Kolmogorv-Smirnov test, 

which yields a distance value D, rejects the null hypothesis that the two distributions of 

nPVI values are the same, yielding a distance D = 0.33 with p < 0.02. 

Figure 6.  The nPVI values for the binary and ternary rhythm timelines common in the 
African diaspora 

 
 

Discrimination Across Different Cultures and Genres 

As mentioned in the introduction, it has been shown in previous research that 

the nPVI could be used to discriminate among different compositional styles such as 

nineteenth-century French and German art song (VanHandel 2006; VanHandel and 

Song 2009). These results motivated the testing of whether the nPVI is able to 

discriminate between musical rhythms of different genres and cultures, as well as non-

musical “rhythms” such as Golomb rulers. To this end, several corpora of rhythms 

were compiled: commonly used meters, Euclidean rhythms, Arabian rhythms, 

Rumanian rhythms, African timelines, Indian talas, and Golomb rulers. The average 

values of the nPVI scores for nine of these corpora are shown in Figure 7 in order of 

increasing mean (average) nPVI values, along with error bars indicating plus and 

minus one standard deviation from the mean. Although for many pairs of families the 

variation within each group is much greater than the differences between their means, 
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the general trend is that among musical rhythms the commonly used meters in Keith’s 

list and the Euclidean rhythms are the simplest (most regular), and the Indian talas the 

most complex (irregular). However, the Golomb rulers on the far right top all musical 

rhythms in terms of the amount of complexity (irregularity) they contain. The notion 

of the complexity of rhythms, and its measurement, are themselves complex issues, 

and there exists a plethora of methods for measuring complexity (Thul 2008; Toussaint 

2013: 107–120). The nPVI is but one such indicator. 

Figure 7.  The average nPVI values for rhythms from different cultures and genres 

 
 

Comparison with Random Rhythms 

To obtain some insight into the sensitivity of the variability of the nPVI for 

different genres of rhythms the nPVI was also computed for two sets of random 

rhythms that were generated as described in Section III. The nPVI values for the 

binary 16-pulse and ternary 12-pulse rhythms are shown in Figure 8, alongside the 

value for the Euclidean (maximally even) rhythms. As might be expected, the nPVI 

values for the random rhythms are much higher than for the Euclidean rhythms. A 

Kolmogorov-Smirnov test of the difference between the distributions of the nPVI  
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Figure 8.  Comparing Euclidean (maximally even) with random rhythms 

 

 

values of the two families of rhythms yields a distance of D = 0.65 with p < 0.001, 

confirming the intuition that the maximally even rhythms are as a group highly non-

random. However, the variability for the 16-pulse random rhythms is not greater than 

that for any of the other families of rhythms tested. Indeed, from Figure 7 it may be 

observed that the North Indian rhythms and desi talas have the highest variability of 

all. Does this mean that the Indian talas are more random than the rhythms of other 

genres? On the contrary, one might expect that variability is greater in specifically 

designed rhythms than in random rhythms. To test this conceivable hypothesis, 

Kolmogorov-Smirnov tests were performed with the nPVI values of the random 

rhythms (12-pulse and 16-pulse rhythms combined) and the three types of Indian talas 

separately: North Indian talas, South Indian sulaadi talas, and desi talas. The results are 

listed in Table 2. For the South Indian talas and desi talas we may reject the hypothesis 

that they come from the same distribution as the random rhythms. On the other hand, 

for the North Indian talas this is not the case, although this may be due to the small 

sample size of the North Indian talas. Comparing the nPVI values of the three systems 

of Indian talas with each other using Kolmogorov-Smirnov tests suggests that the desi  
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Table 2. Kolmogorov-Smirnov tests for nPVI values of the Indian talas and random rhythms 

Kolmogorov-Smirnov Tests Against Random 
Rhythms 

North Indian 
Talas 

South Indian Talas Desi Talas 

D = 0.328 

p < 0.21 

D = 0.327 

p < 0.03 

D = 0.364 

p < 0.001 
 
 
 

talas are significantly different from the North Indian talas (D = 0.389 with p < 0.05), 

as well as the South Indian talas (D = 0.378 with p < 0.001), but the North Indian talas 

are not significantly different from the South Indian talas (D = 0.316 with p < 0.3). 

From Figure 7 it may be observed that the Arabian, Rumanian, and African 

rhythms have almost equal average nPVI values, as well as similar degrees of 

variation. Furthermore, all three genres of rhythms have similar short IOIs with a 

generous supply of IOIs made up of durations of two and three pulses. Therefore, these 

data sets provide strict tests of the power of the nPVI to discriminate between these 

genres of rhythms coming from different cultures. Table 3 shows the Kolmogorov-

Smirnov distances and significance tests of the nPVI values obtained across cultures 

and genres for the nine families of rhythms of Figure 7. The results with statistically 

significant p-values (less than 0.05) are highlighted in bold. Of the thirty-six pairwise 

comparisons, thirty are statistically significant. The nPVI can easily distinguish 

between the North Indian talas and all the remaining data sets. Keith’s meters (the 

most regular), and Golomb rulers (the most irregular) are significantly different from 

all the other groups. The Euclidean rhythms are significantly different from all other 

groups except the Arabian rhythms. The South Indian talas are significantly different 

from all other groups except the North Indian talas. The African timelines and Indian 

desi talas are difficult to distinguish from the Arabian rhythms at the 0.06 level. The 
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families hardest to distinguish are the Arabian from the Rumanian and African 

rhythms, and the Rumanian from the African rhythms. 

 

Table 3. Kolmogorov-Smirnov tests for nPVI values across cultures and genres 

Kolmogorov-Smirnov Tests Across Cultures and Genres 
 Euclidean Arabian Rumanian African Desi Talas North 

Indian 
South 
Indian 

Golomb 
Rulers 

Keith 
Meters 

D = 0.29 
p < 0.012 

D = 0.44 
p < 0.003 

D = 0.48 
p < 0.001 

D = 0.47 
p < 0.001 

D = 0.61 
p < 0.001 

D = 0.75 
p < 0.001 

D = 0.75 
p < 0.001 

D = 1.0  
p < 0.001 

Euclidean - D = 0.23 
p < 0.40 

D = 0.28 
p < 0.04 

D = 0.35 
p < 0.01 

D = 0.38 
p < 0.01 

D = 0.59 
p < 0.01 

D = 0.56 
p < 0.001 

D = 0.89 
p < 0.001 

Arabian  - D = 0.14 
p < 0.94 

D = 0.19 
p < 0.60 

D = 0.31 
p < 0.06 

D = 0.61 
p < 0.01 

D = 0.60 
p < 0.001 

D = 1.0  
p < 0.001 

Rumanian   - D = 0.13 
p < 0.66 

D = 0.24 
p < 0.03 

D = 0.56 
p < 0.01 

D = 0.51 
p < 0.001 

D = 0.91 
p < 0.001 

African    - D = 0.2  
p < 0.05 

D = 0.53 
p < 0.004 

D = 0.47 
p < 0.001 

D = 0.86 
p < 0.001 

Desi Talas     - D = 0.39 
p < 0.05 

D = 0.36 
p < 0.003 

D = 0.72 
p < 0.001 

North 
Indian 

     - D = 0.31 
p < 0.295 

D = 0.58 
p < 0.007 

South 
Indian 

      - D = 0.41 
p < 0.021 

 

 

A New Refinement of the nPVI.  

It is an obvious fact that the order of the duration intervals of a rhythm influences 

the rhythm’s perceived complexity by creating contrast between intervals and their 

adjacent intervals, as well as between intervals and the underlying meter. However, as 

already pointed out, the standard deviation of the IOIs is by definition blind to this order.  

Not surprisingly, it is not difficult to create examples that show that the standard 

deviation fails to completely characterize the complexity of rhythm timelines. Consider 

the well-known Cuban son clave and Brazilian bossa nova rhythm with IOI durational 

patterns [3-3-4-2-4] and [3-3-4-3-3], respectively (Toussaint 2002). The bossa nova 

rhythm is considered to be more complex (and syncopated) than the son clave, but the 

standard deviation of the latter is 0.837, whereas for the former it is only 0.447. Although 

the nPVI takes order into account and is thus contrast-sensitive, it is still oblivious to the 
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underlying meter. Hence in this example the nPVI fares no better, yielding a value of 

40.5 for the son clave and 14.3 for the bossa nova. Other equally anomalous examples are 

easy to find. The shiko [4-2-4-2-4] is much simpler than the son clave but its nPVI value 

of 66.7 is much greater. 

Barry, Andreeva, and Koreman (2009) expose additional limitations of the 

nPVI in its ability to capture perceived rhythm in the Bulgarian, English, and German 

languages. These results support the thesis of Arvaniti (2009), who argues that metrics 

such as the standard deviation as well as the nPVI are unreliable predictors of rhythmic 

types in languages. Nolan and Asu conclude from their study that in language, 

duration cannot be “assumed to be either the exclusive correlate of perceived rhythm 

nor to act independently of other cues in perception” (2009, 75), and according to 

Royer and Garner, “pattern organizations are wholistic” (1970, 115). The results of the 

present study suggest similar conclusions with respect to short rhythms in the musical 

domain. Nevertheless, as the results in Table 3 attest, the nPVI is successful at 

discriminating between thirty of the thirty-six pairs of rhythm families tested. 

To be more accurate and generally useful for both theoretical and practical 

musical rhythm analysis, a suitable modification of the nPVI that takes metrical 

information into account is desirable. What the exact nature of such a modification 

should entail in order to increase the correlation between the nPVI and human 

measures of complexity is as yet an open question. However, investigations along 

these lines have already begun. London and Jones (2011) proposed several 

modifications of the nPVI for its specific application to musical rhythm. These 

refinements include the application of the nPVI hierarchically to higher levels of 

rhythmic structure, the analysis of binary and ternary (duple and triple) rhythms 
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separately, and the use of alternate codings of the IOI durations, such as rounding the 

durations to the nearest beat. 

Here a new refinement of the nPVI is proposed that is motivated by the desire 

to modify the nPVI so that it incorporates metric information, and by the three human 

performance complexity measures investigated by Fitch and Rosenfeld (2007):  (1) 

performance complexity, (2) beat-tapping complexity, and (3) number of resets. Here, 

“beat” refers to the 4/4 meter of the 16-pulse rhythms used in the experiments. The 

performance complexity is a measure of discrepancy between a rhythm heard, as 

played by a computer, and its subsequent reproduction by the listener by tapping. It is 

important to note that in these experiments the rhythm is first played together with the 

4/4 beat (meter) provided by a low frequency “bass drum” sound, which is 

continuously played by the computer during the rhythm reproduction task. The beat-

tapping (meter) complexity is a measure of discrepancy between the meter played 

together with a rhythm, and the subsequent reproduction of the meter by tapping, after 

the metric beat stops sounding. Similarly, in this test the rhythm continues to be played 

after the beat stops sounding. During the beat-tapping listening tests, the subjects 

sometimes alter their perception of where the metric beats are by shifting their position 

during the beat-tapping trial. This shift is termed a reset. More specifically, in the 

words of Fitch and Rosenfeld, “A reset event was scored when a subject’s tap occurred 

closer in time to the syncopated pulse (the ‘offbeat’) than to the correct, unsyncopated 

pulse (the ‘onbeat’), where the syncopated pulse falls exactly midway between 

unsyncopated pulses. After the data had been optimally aligned, the number of reset 

events as so defined was summed for each trial” (2007, 49). This number of resets 

determines the third measure of complexity. 
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In the experiments performed by Fitch and Rosenfeld (2007) the subjects first 

listened to the rhythm and meter together, then tapped each part individually while 

listening to the other part.  Immediately preceding this test the subjects listened to and 

tapped either the rhythm or the meter while listening to both simultaneously. 

Therefore, the subjects were cognitively processing the resultant rhythms obtained 

from the union of the rhythms’ onsets and the beats of the 4/4 meter. This observation 

motivated probing the Fitch-Rosenfeld data deeper with the following modification of 

the nPVI that incorporates the meter of the rhythm. The Modified nPVI (M-nPVI) of a 

rhythm R, heard in the context of a meter M, is defined as the standard nPVI computed 

on the resultant rhythm RM obtained from the union of R and M. For example, if the 

rhythm R is the son clave given by [x . . x . . x . . . x . x . . .] and the 4/4 meter M is [x . 

. . x . . . x . . . x . . .], then the resultant rhythm RM is [x . . x x . x . x . x . x . . .]. Thus it 

was felt that this measure, although quite different from the standard nPVI, was more 

suitable for testing in situations where a rhythm and its meter are felt together either 

acoustically or internally in the mind of the performer. Consider how the Modified 

nPVI compares with the standard nPVI for the four rhythms compared at the start of 

this section. They were, in order of increasing complexity (and syncopation), the shiko 

(nPVI = 66.7), the son (nPVI = 40.5), and the bossa nova (nPVI = 14.3). Note that the 

nPVI values are totally off the mark, producing a list in the reverse order of what is 

expected. The Modified nPVI values for these rhythms are: shiko (R-nPVI = 26.7), 

son (R-nPVI = 38.9), and bossa nova (R-nPVI = 47.6), in perfect agreement with 

musicological judgments. 

The Spearman rank correlation coefficients were computed for the Modified 

nPVI with all thirty rhythms in the Fitch-Rosenfeld data. In addition, since seventeen 

of the thirty rhythms had silent first pulses, the correlations were also calculated  
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Table 4. Spearman Rank Correlations Between nPVI and Human Performance Complexities for Fitch-
Rosenfeld Rhythms 

Spearman Rank Correlations for nPVI with Fitch-Rosenfeld Rhythms 

 Performance Beat-Tapping Number of Resets 

nPVI 

(Entire Data) 
r = 0.40 

p < 0.014 
r = -0.045 
p < 0.41 

r = 0.043 
p < 0.41 

nPVI 

(Onset on First 
Pulse) 

r = 0.0 
p < 0.5 

r = -0.021 
p < 0.24 

r = 0.024 
p < 0.47 

nPVI 

(Silent First Pulse) 
r = 0.68 

p < 0.002 
r = 0.20 
p < 0.22 

r = 0.21 
p < 0.21 

 

Table 5. Spearman Rank Correlations Between Modified nPVI and Human Performance Complexities 
for Fitch-Rosenfeld Rhythms 

Spearman Rank Correlations for Modified nPVI with Fitch-Rosenfeld Rhythms 

 Performance Beat-Tapping Number of Resets 

Modified nPVI 

(Entire Data) 
r = 0.23 
p < 0.11 

r = 0.56 
p < 0.001 

r = 0.53 
p < 0.001 

Modified nPVI 

(Onset on First Pulse) 
r = 0.42 
p < 0.07 

r = 0.71 
p < 0.003 

r = 0.77 
p < 0.001 

Modified nPVI 

(Silent First Pulse) 
r = 0.21 
p < 0.22 

r = 0.59 
p < 0.007 

r = 0.52 
p < 0.017 

 

 
independently with only the rhythms that contained an onset on their first pulse, and 

with only the rhythms that had a silent first pulse. The standard nPVI and Modified 

nPVI results are displayed in Tables 4 and 5, respectively, where the statistically 

significant values are highlighted in bold. For the standard nPVI (Table 4), only the 

performance complexity yielded statistically significant results. Using the entire data 

set a mild correlation with nPVI was observed (r = 0.40, p < 0.014), whereas using 

only the rhythms that contained a silent first pulse yielded a high correlation (r = 0.68, 

p < 0.002). The beat-tapping and number of resets measures showed no correlation 

with the nPVI. On the other hand, for the Modified nPVI (Table 5), the beat-tapping 

and number of resets measures are highly and statistically significantly correlated, 
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especially for the rhythms that have an onset on their first pulse (r = 0.71, p < 0.003  

and r = 0.77, p < 0.001, respectively). 

Although the Modified nPVI gives improvements over the standard nPVI for 

the Fitch-Rosenfeld data, such improvements have limited generalizability. In 

particular, the two measures are effectively identical for rhythms that contain the 

metric beats as part of their onsets. Indeed, all the rhythms in the Essens data and 

almost all the rhythms in the Povel-Essens data have this property. Therefore, one 

cannot expect the Modified nPVI to offer improvements if the rhythms are not 

syncopated. 

V. DISCUSSION 

The principal goals of the research described here are to explore the efficacy of 

the nPVI as a tool for measuring the complexity of short musical rhythms, to compare it 

to the often used statistical measure of standard deviation, and to explore its possible 

applications to various problems that arise in musicology and music cognition. The main 

results exhibit two general trends that depend on the nature of data to which the nPVI is 

applied. The first type of data comprises predominantly human judgments of perceptual 

complexity obtained from listening tests, and human performance complexity evaluated 

with rhythms that were artificially algorithmically generated. The second kind of data 

consists of mathematical measures of complexity (nPVI, standard deviation, and Keith’s 

metric complexity) that were computed on rhythms observed in the traditional musical 

practices of several cultures. On the artificially generated data the nPVI measure 

performed poorly, with one exception. On the traditional rhythms used in cultural 

practice it fared much better. While it is acknowledged that the use of artificially 

generated rhythm may be useful to test certain hypotheses, these results underscore the 

importance of also working with rhythms that are used outside of the laboratory. 
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The standard deviation has been used as a measure of variation for some time 

in language studies. More recently, research has moved towards using the nPVI in 

order to quantify the contrast between adjacent intervals, something that the standard 

deviation ignores completely. The results obtained here, however, show that the 

behavior of the two measures is, in general, not as different as one might hope. This is 

not to say that the nPVI does not offer substantial improvements over the standard 

deviation. Indeed, the Povel-Essens data set provides a compelling example of how 

totally useless the standard deviation of the IOIs can be for measuring the complexity 

of rhythms that are composed of only permutations of IOIs. 

The correlation results in Table 1 exhibit a pattern of nPVI values that depend 

on the type of rhythms analyzed. The correlations between the complexity measures 

and the nPVI values tend to be either non-existent, low, or statistically insignificant for 

extreme rhythms or for those artificially generated by means of combinatorial 

methods, whereas the correlations are high and statistically significant for rhythms that 

are used in practice in traditional music. The highest correlation between the standard 

deviation and the nPVI of the IOIs is obtained with the sub-Saharan African timelines 

composed of five onsets: r = 0.80 with p < 0.01 for the ternary timelines, and r = 0.86 

with p < 0.01 for the binary timelines. 

The nPVI appears to be quite useful as a feature for discriminating between the 

rhythms of different cultures and genres, as the calculations in Figure 7 and Table 3 

attest. Much has been written comparing the Indian talas to rhythms from other parts 

of the world, and within India, contrasting the rhythmic aspects of North Indian music 

with those of South India. Kuiper writes that “In North Indian music the talas are 

fewer and not organized in any systematic manner” (2010, 258). Furthermore, Kuiper 

adds that “North Indian talas have a further feature, the khali (‘empty’), a conscious 
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negation of stress occurring at one or more points in each tala where one would expect 

a beat. There is nothing comparable to the khali in the South Indian system” (259). 

Hence, one might expect from these descriptions that North Indian talas might be 

different and perhaps more complex than South Indian talas. However, as the results of 

Table 3 indicate, the nPVI of the IOIs of the talas of these two genres of music fails to 

discriminate among them, suggesting that the difference between the two families of 

rhythms resides in aspects other than those dealing with the irregularity of the IOIs. 

Concerning the measurement of rhythmic complexity in Indian music Martin Clayton 

writes: “I can think of no objective criteria for judging the relative complexity or 

sophistication of rhythm in, for example Indian rag music, Western tonal art music, 

and that of African drum ensembles” (2000, 6). While this observation may at present 

be true enough with respect to the full richness of rhythm interacting at all its 

hierarchical levels, the nPVI does provide one objective measure for comparing 

meters, timelines, and talas at the surface level.  

The complexity of Indian rhythm has also been compared to that of West 

Africa, some authors claiming each is more complex than the other. Kofi Agawu 

(1995) reviews a profusion of published claims about the alleged complexity of West 

African rhythms. With respect to Indian rhythms, the journalist and producer Joachim-

Ernst Berendt repeats the exaggerated and doubtful Orientalist and Exoticist tropes: “It 

is necessary...to say a few words about the mysteries of Indian music. Its talas, its 

rhythmic sequences—incomprehensible for Western listeners––can be as long as 108 

beats; yet the Indian ear is constantly aware of where the sam falls” (1987, 202). In his 

comparison of African and Indian music with European music Benjamin I. Gilman 

writes: “Hindu and African music is notably distinguished from our own by the greater 

complication of its rhythms. This often defies notation” (1909, 534). From the 



The Pairwise Variability Index as a Measure of Rhythm Complexity 
 
 

	
   31 

Kolmogorov-Smirnov test results in Table 3 it may be concluded that Indian talas are 

quite different from African timelines according to the nPVI values of their IOIs. For 

North Indian talas D = 0.53, p < 0.004, and for South Indian talas D = 0.47, p < 0.001. 

Furthermore, from Figure 7 it may be surmised that Indian talas are much more 

complex than West African timelines when the nPVI of the IOIs is used as a measure 

of rhythm complexity. The average nPVI values for African timelines, and North 

Indian and South Indian talas are 35.13, 54.50, and 68.34, respectively. The t-tests for 

comparing the means for the North and South Indian talas with West African timelines 

yield values of 4.0 and 6.9, respectively, with p-values less than 0.0001, differences 

considered by conventional criteria to be extremely statistically significant.  

The Arabian wazn (rhythmic cycles) and African timelines are in some respects 

quite different. Whereas the African timelines use cycles (measures) that are composed 

predominantly of twelve, sixteen, and twenty-four pulses, the Arabian wazn employ a 

much wider range of values that, like the Indian talas, may reach numbers as high as 

176 (Touma 1996, 48). In that sense the Arabian wazn may be considered to be more 

complex than the African timelines. However, according to the nPVI they are not 

significantly different. The Kolmogorov-Smirnov test yields D = 0.19 with p < 0.6. 

This highlights the fact that the nPVI may be influenced more by the contrast in 

adjacent IOIs than by the number of pulses in the cycle, providing further evidence 

that the nPVI is insensitive to the underlying meter. 

The relationships between all the Kolmogorov-Smirnov distances listed in 

Table 3 may be visualized at a glance by means of the BioNJ phylogenetic tree shown 

in Figure 9. Phylogenetic trees were originally developed in the context of 

evolutionary biology (Huson and Bryant 2006). The tree is used here for the purpose 

of visualization, and was computed using the BioNJ algorithm of Gascuel (1997), 
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available in the SplitsTree-4 software package (Dress, Huson, and Moulton 1996). The 

tree reveals three clusters, one comprising Golomb rulers, together with South and 

North Indian talas, a second consisting of the Keith meters and the Euclidean rhythms, 

and a third cluster that separates these two, made up of desi talas, African timelines, 

Rumanian rhythms, and Arabian wazn. The Kolmogorov-Smirnov distance between 

any two families of rhythms maps to the length of the shortest path between the 

corresponding nodes in the tree. Thus the furthest pair of rhythms consists of the 

Golomb rulers and the Keith meters. Since Golomb rulers make up the most complex 

rhythms, an alternate way to measure the complexity of a family of rhythms is by the 

magnitude of the Kolmogorov-Smirnov distance between the corresponding nodes in 

this tree; a small distance to the Golomb ruler node indicates a high degree of 

complexity. By this measure the tree in Figure 9 produces a clear ordering of the nine 

rhythm families in terms of decreasing complexity, as the tree is traversed from left to 

right. Furthermore, this ordering is identical to that obtained by ranking the nine 

families according to their average nPVI values illustrated in Figure 7. 

Figure 9.  BioNJ phylogenetic tree of the Kolmogorov-Smirnov distances from Table 3. 
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The thirty rhythms collected by Fitch and Rosenfeld as well as their 

experimental results with three different measures of human performance complexity 

permitted several comparisons with the nPVI. Furthermore, the fact that about half of 

the rhythms had no onset on their first pulse permits dividing the data set into two 

classes to determine if any differences exist in the results for these two sub-families of 

rhythms. Two of the complexities, the beat-tapping complexity and the number of 

resets complexity, measure almost the same skill, namely how difficult it is to tap the 

meter while listening to the rhythm. On the other hand, the measure termed 

“performance complexity” quantifies how difficult it is to tap the rhythm while 

listening to the meter (Tables 4 and 5). The results of Table 4 indicate that the 

performance complexity involves a very different type of skill compared to the other 

two complexities. The beat-tapping and number of resets complexities are not 

correlated at all with the nPVI. These results also provide compelling evidence that the 

results differ radically for the two sub-families of rhythms when it comes to 

performance complexity. For the rhythms with a silent first pulse r = 0.68 with p < 

0.002, and yet for rhythms with an onset on the first pulse there is no correlation at all 

with the nPVI. Naturally, for the entire data the results fall in between (r = 0.40 with p 

< 0.014). These results suggest that reproducing rhythms by tapping while listening to 

the meter is more difficult when the rhythms lack an onset on their first pulse. The 

results in Table 5 with the Modified nPVI are the converse of those in Table 4. Here 

the performance complexity is not correlated with the Modified nPVI for either the 

entire data or any of its two subsets, whereas all the other correlations are highly 

significant. These results, in combination with those of Table 4, suggest that the 

difficulty encountered by the subjects when tapping the meter while listening to the 
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rhythm is determined by the irregularity of the resultant rhythm obtained from the 

union of the original rhythm and the meter. 

Two fundamental classes of rhythms are the binary (duple) and ternary (triple). 

In African music these two classes are the most prevalent, with binary and ternary 

rhythm cycles being composed mostly of sixteen and twelve pulses, respectively. 

Christopher Hasty (1997, 132) argues that triple meter is markedly more complex than 

duple meter. Indeed, Hannon and Johnson (2004) and Huang et. al. (2012) have 

demonstrated experimentally that infants and adults, respectively, can discriminate 

easily between binary and ternary rhythms. On the other hand, as the results of Figure 

6 illustrate, the average nPVI is unable to clearly discriminate between the binary and 

ternary African timelines (t = 1.542, with p = 0.0636, one-sided test). Nevertheless, the 

two distributions of the nPVI are quite different from each other, as the histograms in 

Figure 10 make plain. Indeed, as pointed out in the results section the Kolmogorov-

Smirnov distance between the distributions is given by D = 0.33 with p < 0.02. Since 

the Modified nPVI correlates highly with the human beat-tapping and number of resets 

complexity measures (see Table 5), whereas the standard nPVI does not, one might 

wonder if the poor discrimination with the mean is due to the fact that it does not  

 

Figure 10.  Histograms of the nPVI values of the binary and ternary African rhythms. 
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incorporate metric information. However, the results with the Modified nPVI are even 

worse in this setting; the Kolmogorov-Smirnov test yields D = 0.375 with p < 0.2, and 

the t-test yields a value of 1.26 with p < 0.1. These results suggest that these 

complexity measures are not salient features that humans use to discriminate between 

duple and triple rhythms, and that the Modified nPVI has additional limitations. 

 
 

VI. CONCLUSION AND FURTHER DIRECTIONS 

The results obtained here indicate that the nPVI and the Modified nPVI are 

promising and powerful tools in certain contexts, although the precise general nature 

of these contexts has yet to be fully explored. The results also indicate that the nPVI of 

the IOIs, at least for some families of rhythms, does not differ markedly from the 

standard deviation of these intervals. 

One observation that is common to all the results obtained here, evidenced from 

Figures 6, 7, and 8, is that the nPVI measure has a high variance. This sensitive behavior 

to outliers has been previously noted in the research on language (Wiget et al. 2010). To 

combat this sensitivity Jian (2004) proposed a modification of the original nPVI 

formula that incorporates the median rather than the mean of the adjacent interval 

differences. It has yet to be determined whether this variant of the nPVI would also 

improve the results in the music domain, such as those obtained here.  

The marked difference in results obtained with rhythms that do or do not 

contain onsets on their first pulse provides compelling evidence suggesting that future 

studies of rhythm should treat the two categories of rhythms separately to better flesh 

out the effects of meter on other parameters. 

Although the Modified version of the nPVI proposed here appears to be useful 

for some applications, the results also highlight its weaknesses in that it fails to 
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discriminate between the binary and ternary African rhythms, as well as rhythms with 

onsets that contain the metric beats. It would be interesting to explore further 

refinements of the nPVI in the hope of obtaining a complexity measure that takes 

metric information into account in a more general and salient manner. 
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